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Disclaimer

The U.S. Food and Drug Administration (FDA), the Joint Institute for Food Safety and Applied Nutrition
(JIFSAN) and Risk Sciences International (RSI) have taken all reasonable precautions in creating the
FDA-IRISK® quantitative risk assessment system (version 4.0) and the documentation accompanying it.
FDA, JIFSAN and RSI are not responsible for errors, omissions or deficiencies regarding the system and
the accompanying documentation. The FDA-IRISK system and the accompanying documentation are
being made available “as is” and without warranties of any kind, either expressed or implied, including,
but not limited to, warranties of performance, merchantability, and fitness for a particular purpose. FDA,
JIFSAN and RSI are not making a commitment in any way to regularly update the system and the
accompanying documentation.

Responsibility for the interpretation and use of the system and of the accompanying documentation lies
solely with the user. In no event shall FDA, JIFSAN or RSI be liable for direct, indirect, special, incidental,
or consequential damages resulting from the use, misuse, or inability to use the system and the
accompanying documentation.

Third parties' use of or acknowledgment of the system and its accompanying documentation, including
through the suggested citation, does not in any way represent that FDA, JIFSAN or RSI endorses such
third parties or expresses any opinion with respect to their statements.

September 2016



Contents

1 OVERVIEW ....c.ciiiieiiiiinniiiiinniiiieenioiiensieniessesienssesssnssosssnsssssssssesssnssssssnssssssnssssssnssssssnsssssansssssansssssansssssanssssns 1
1.1 CHOICES FOR NUMERATOR (DALYS, COI, OR QALY LOSS)...tteruterriteriierieeeniiesnietesitessteeesisesssesesisessseeesssesssssesssesssenes 2
1.1.1  Applying External Sources of DALY, QALY Loss, and COI EStiMQtes............c.coevueeveeenoeeesueenieenieenieennne 4
1.1.2  Number of lliness as @ NUMErator in FDA-IRISK ...........cccueeeeeiueeeeeeeieeeciteeeesieeeeestataesiaeaeesraeasesseaeennes 4
1.2 CHOICE FOR DENOMINATOR (PER YEAR) .....uuvtieeeiteeeeeiteeeeeteeeeeeteeeeeiseeeesetseeeeasteeeeesseesaasseeeeansseeeensseeesassseessnsseeeanns 4
1.3 THE OVERALL CALCULATION OF RISK.tuvteeutttirttesitttesitesstttesitessseeesiseesseeesssessseeesssesssseesssesssseesssesssseessseesseessseessseesns 5
1.3.1 Probability of IlINess: ACULE HAZAITS ...........coovueeeiueieieeiieeet ettt ettt 6
1.3.2  Probability of Ilness: CAronic HAZAIAS .............c..ueeeeueieeeeieeeeeeeeeesteeectee e ettt e e e sttt e e eeaaaeestraaasssaeaennnees 6
14 RANKING OPTIONS ...tttteteeeuittteeeeeeeseitstteeeesssauasteaeeeeesaaustateeeeesasaasbebteeeesesansbaeteeeeeesaabssaaeeesesanasssaaeeesssasannrenaeas 6
2 ESTIMATION OF THE EXTENT OF CONTAMINATION: PROCESS MODELS...........cooisnnnmmenninnisssssnseenssssssssnns 7
2.1 DESCRIPTION OF INITIAL CONTAMINATION ...veeuvteeveessreeaseessseesseesssesssesssesasseessssesssessssessssesssessssesssssssssessnsessssessns 8
2.1.1 INItial Prevalence GNA UNIE SiZE ...........ocueeeviesieesiiesieesiitesieesittesteesttt e sitsestteesisesstsessatassssesssessssseenaseees 9
2.1.2  Distributions for Initial Concentration aNnd UNit SiZe .............coccueerueeriiesieeiiiesieeeeeseesee e 9
2.1.3  LinKing tO Other ProCesS MOUEIS...............oeeeeueieeeeieee e eeeteee ettt ttta e e et e e e etaa e e saaaesstsaaeestaeaensses 10
2.2 MATHEMATICAL DESCRIPTION OF THE PROCESS STAGE TYPES....cecvteiteeeteesreesseesseessseessseessseesseessseessessssessseessses 11
2.2.1 Variability DiStributions fOr PrOCESS TYPES .......uueeeeuveeeeeiieeesitieeeeeseeeesitseeesisssaaessesesssssssesssssasssssesananes 12
2.3 PROCESS TYPES FOR IMICROBIAL HAZARDS ......vvieeuieeierieeteesiteesseesseeesesssseessseesssaessseesssesssseesssessssessssesssssesseenssens 13
2.3.1 INCrease by GroWtN-MICIODIQI ..................oeeeeueieeeiee et ee e ee e e ettt e e e taa e e s aa e e e tsaaeesssaaeessees 14
2.3.2  Increase by Growth Model-MiCrobiQl...............cooueeieieniiesiienieesii ettt 14
2.3.3  Increase by AdditioN-MiCIOBDIQI.................coeeecueiieeeiieeesiieeeecee et ee e e e et e e e eaa e e saaaesstsaaeestseaeesaes 15
2.3.4  Increase by Cross Contamination (Amount) - MiCrOBIQl...............cccveevueesiuveeieesiiiesiieesiireesieesseesiseesans 16
2.3.5 Increase by Cross Contamination (Concentration) - Microbial..................ccceeeeviuveeeiieeeeciieeeeiiveaeennn 17
2.3.6  DECIEASE-MICIODIQL.........cocueeeeeeeiiieeeeeeee ettt ettt ettt e et sate et s e e nateesaneenanes 17
2.3.7  Decrease by Inactivation Model-MiCroBiQl..................uueieeeeceuiiiiiiieeeeeciieieeeeeeeesiteea e e e e eesciseraaaaeessinnes 19

D S B Y/ [0 XN 0o To [ To [ 1Y [ ol ) o) o | S 19
2.3.9 [oTe) (101 B LY [ ol o) o) o] AU RSPt 19
2.3.10  Partitioning-MIiCIrODIQI ...............oveeeueeeeeeiieeeeeit e eeeee et e et e e ettt e e et e e e st e e e s asee e s asseassasteaessastaasssses 21
2.3.11  Evaporation/Dilution-IMICIOBIQ.............c.occveeeveeeeeeereeeieeeeieeeeeesteeetesesveeesseesseesssesssesssessseseseesases 21
2.3.12  Partial Redistribution-IMICIOBIQ ..............ccovueeeiueieiiieiiieee ettt ettt ettt e sne e 22
2.3.13  Total RediStribUtioN-MiCIODIQ. ............cccueeeeeiiiiieeieee ettt ettt e e st e e e e 23
2.3.14  Sampling (OC CUIVE) = MICIOBIQL...............cocveeiireeieesiieeieesie e et estseeaeese e s e e s tsesaeessseeessesssaesseenases 24
2.3.15 Sampling (Simple PoisSON) - MICIODIQI ...............cccuueeeieieeeeiieeeeeee e et e e e s aa e e et aeeeraaeeaneas 25
2.3.16  INSPECLION = MICIODI .........oeeeeiieeeee et e et e et e e ettt e e et e e e sttt e e sanaee e s aasteassasteaessastaasansees 27
2.3.17 Set Maximum Population Density (MPD) - MICIOBiIal.................cccueeciuueeeeciieeeeieee e eecveeeeerea e 27
DG T kS V(o X o To [ Yo [ [T o) o Lo O 27
DG W0 K I & [+ Tol=d o To) [0 (=T 1Y [ ol o) ) Lo | USRI 27
2.4 PROCESS TYPES FOR CHEMICAL HAZARDS .....eeuveeuteesiteeniteesiteesiteesuteesaeeesaseessseesuseessseesssesssssesssessseeesssesssesesssessseees 28
2.4.1 Increase by AdAitioN-CREMUCAI .............c....uveeeieeeeeeeeeee ettt ee et e e e e e et e e e e e e e esaaeeaaaaeeesanses 28
2.4.2  DECreaSE-CREMIUCQA ....cccueeeiieeiieeieeeee ettt ettt ettt ettt e ettt ate e bt e e sate e ateenateenateenaseenanes 29
2.4.3  MaSS CRANGE = CROMUCQL..........oeeeeeeeeeeeeeee et e et e e ettt e e et e e e et e e s atea e s asteaeessteaesssteaesnses 30
2.4.4 POOING-CROMUC ...ttt ettt e e e ettt e e e e e e ettt a e e e e esasastbesaaeesasasssanaaeeeassassses 30
2.4.5  Partitioning-CREMUCQO ..........ccc.veeieeeeee e ettt e e e ettt e e ettt e e sttt e e sttt e e s anseeasaasseaesssteaessasseassnsees 31

September, 2016 Page i



2.4.6 Evaporation/Dilution-CREMICA] ............c.ueecuueeeeeeieeeeeeeseeetee ettt etteeesteeeeaeestaa e e e staeeasaessssassessessaeasenen 31

2.4.7  Partial Redistribution-CREMICAL.............c.ueeeeeuiiieeieieeciee ettt st seae e st e e e st e e s ssteassaeeas 31
2.4.8  Total RedistribUtion-CREMUCQI ...........c..cccveeeeeeiiiiesiiiesiitesie ettt ettt ettt ste sttt ste s tte e s e esateesaseenases 32
2.4.9  Sampling (OC CUIVE) - CREMICAI ..........cccuueeeeeeciiieeeeesteee ettt ste ettt s e e s ta e s teessa e s e e sssaeeseesnses 32

b 0 N0 B (o W@ Lo [ Yo [T 81 o T=T 1 ol | S 33
D Y & [+ Tol =] o To) o (=T ol 81 Y=1 1 Lol | USSP 33

3 PREDICTIVE IMODELS .....cctttiiiiiiiinnneeiiieissssssssessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnns 33
3.1 INCREASE BY GROWTH IMIODEL ...tttietiieiietttteee e e e sttt ee e e e e sttt eeeeesesuantet et eeesesasbabteeeeeesanbsbaaaeaeesesunsbeaeaeesesnnses 33
3.2 DECREASE BY INACTIVATION IMIODEL.....uvteeuveeruteeniueesureesueesiseessseesuteessseesssesssseesssesssseesssesssesesssesssssessesssssesssesssees 36
4 ESTIMATION OF THE EXTENT OF CONSUMPTION: CONSUMPTION MODELS ......c.ccceeireenicinnnnicinnnnccnenenes 38
4.1 AACUTE EXPOSURE. c...tteeuttesuteeeteesuteesueesateesseesabeesstesabeessssesaseeesssesaseesnssesabeesnssesasesesssesseesnssesnsessnssesnsesesseesnsenes 38
4.2 CONSUMPTION MODEL FOR ACUTE EXPOSURE ....veeuvvieieeeteeesteesteeesseessesesseessesesseessasessesssessnsesssessnsessnsessnsessnses 40
4.2.1 Population Groups fOr ACULE EXPOSUIE ............ueeeecuveeeeiieeeeeciieeeesiseeessisseaessisesesssssaessssasassssseesssssesssees 40
4.2.2  Calculation of Amount Consumed per EQting OCCASION ..........cccueeeueeeneeesieenieenieesieesieeenie et 40
4.3 CHRONIC EXPOSURE «..vvteuvteeuteeenteesteseseesssesssseessesenseesssessnseesssessnseesssessnsessnsessnsessnsessnsesssessnsessnsessnsessnsessnsessnses 40
4.3.1 Chronic Exposure for MUItIfOOd SCENATITOS..............ooevuieiieieiieiiieee et 41
4.3.2  Chronic Exposure for Multihazard - Multifood SCENAIIOS ...........cccueeecvueeeeciieeeeiieeesiieeeeciteeeeeieae e 42
4.4 CONSUMPTION MODEL FOR CHRONIC EXPOSURE .....vvieviecteeeteesieeeteesteeesseessesesseeesassnsesssesensessnsessnsessnsessnsessnnes 43
4.4.1 Life Stages fOr CAIONIC EXPOSUIE..........cccueeeeeieeeeeiieeeesiseeeeectteaeesteaeesisseaeastseseessssssessssaessssessessssssessssees 43
4.4.2  Life Stages for Multifood CRIrONIC EXPOSUIE..........c.ceecueeereeesiiiesieesiieeeiee ettt et 43
4.4.3  Calculation of Lifetime Average Daily Consumption (LADC).............cccoueeeeereeeecieieesiieeeeiiveeeesisvseesannns 43
4.5 VARIABILITY DISTRIBUTIONS FOR AMOUNT PER EATING OCCASION AND BODY WEIGHT ....vvevveeiiieriieeireesieeeeeveeseve e 47
5 ESTIMATION OF CASES OF ILLNESS: DOSE RESPONSE MODELS .........cccovnnmmmeriiiinssssnnnenesissssssnssesssssssssnns 48
5.1 DOSE CALCULATION, ACUTE EXPOSURE .....eeutteuteeuresueesueesueesseeseensesseesseesseensesnsesnsesssesseessesnsesnsesssesseessesnsesnsesssesnees 48
5.2 DOSE CALCULATION, CHRONIC EXPOSURE......ccvvutuueieeeeereruuiieeeeerressnnieseessesssnnnseseesssssssnaesesssssssnnneesesssssssnneeeesssssses 49
5.3 DOSE RESPONSE MODELS FOR MICROBIAL HAZARDS (ACUTE EXPOSURES)....veeuveeuverueerueerieerseeseeneesneesseenseensesnsessesaees 50
53.1 BEEAPOISSON ...ttt ettt ettt e e e ettt e e e e e ettt e e e e e e st et e e e e e nnaeeeeeeeaennnee 51
T 7 = 11 o (oo | S 52
53.3 L3 (e Lo I=1 4 1 o | F USSRt 52
5.3.4  NON-TRIESNOIA LINEAL ...ttt ettt et ettt et e s e enateesaneenans 53
535 TREESNOIA LINEQT ...ttt ettt et e ettt e et a e sttt e e e sastesenasbeaesaseeeens 54
50306 WEIBUIL ..ottt ettt ettt et et et ettt et ettt at e ettt e ate et esaneenanes 55
5.4 DOSE RESPONSE MODELS FOR CHEMICAL HAZARDS (ACUTE EXPOSURES) ....uveeuverurerneesueesieesseeseeeesseesseenseensesnsesnsesaees 56
5.4.1 (@0 1] [o T 17=3 RoYe 4T ) 4 12 L | AU UUR USSRt 56
I = (1] ¢ [ [ole 57
5.4.3 IR TET=To Tl o3 VANY Lo o T=3N ol ot {o ] (USSRt 57
X B o T B B T =X s Lo [ B N =T | P PSPPSRSO UPPP 58
R N RY ¢TI T =2 o o Lo USSRt 59
X Y U V=X 1 1o (o [ N Tt | GO PP PP TPPPP 60
5.4.7 WWEIDUIL ...ttt et ettt ettt e et e e ettt e st a e e st e e s aatt e e s saaeesabbeaesnasbeesaassnas 61
5.5 DOSE RESPONSE MODELS FOR CHEMICAL HAZARDS — CHRONIC EXPOSURES ....cccuvteiireeiieeniieenieeesreesieeesneesaeeesineenaeees 62
551 D =Tolg=To K1 To W Moo N0 Ko o 1K o PPNt 63
552 [0 =Tol =20 K 1 ol Mo Yo | K3 (o UUT T PUPRPRRNE 64

September, 2016 Page ii



5.5.3 ID]=Tolg =10 kY1 To I Koo LT Ko Yo 1KY Lol PP PPPPPPPPPPPPPPPRE 64

55,4 DECIEASING PIrODIL ......cceeeeieiieieeeeeee ettt ettt ettt et e 64
555 GUMIMIQ ..ottt et e ettt e e e e ettt e e e e e st e e e e e s s et e e e e e sassnnneeeesenaannnnee 65
N - Koo 1 1 o PSPPI 66
5.5.7 T o L oo 1K A Lol PP PP PPPPPPPPPPPPPPPRt 67
5.5.8  L0G-LOGiStic With BACKGIOUNG...........c..coooueieieieiiieieeeieeee ettt ettt et 68
T R 1Y [ 1 Y [ L= 69
I OB o/ 0] oY a1 Lo T = PP 70
R I 1= g T (<o [ e Yo B o o) o S 71
5.5.12  RESEIICLEA WEIBUI ...ttt ettt ettt ettt e e e st e e st e e s sastaasssteaessasneassasseas 72
6 POSITIVE-ONLY BINOMIAL AND POISSON DISTRIBUTIONS........ccettiiiiiisssnnnennisissssssssseessssssssssnsssssssssssssses 73
7 QUANTIFYING UNCERTAINTY ...oiiiiiiiiueiiieiiiinninessiisiiiisssssssiisssimessmsssssssimsssssssssssssssssssssssssssssssssssssssssssnes 74
8 EVALUATION OF THE CONVERGENCE FOR THE MONTE CARLO SIMULATION ......cccccereiirriisssnnnnenssnssssnnns 76
9 REFERENCES ......ccciiiiiiiiuttetiiiiiiiiinnteetiississsssssessssssssssssssessssssssssssssessssssssssssssessssssssssssssssssssssssssssssssssssssnns 78

September, 2016 Page iii



FDA-iRISK® 4.0 Technical Document

1 Overview

Stakeholders in the system of food safety, in particular government agencies, need evidence-based,
transparent, and rigorous approaches to estimate and compare the risk of foodborne illness from
microbial and chemical hazards. FDA-IRISK® is a web-based software tool intended for relatively rapid
assessment of the risks associated with microbiological and chemical hazards in food. The tool provides
a step-wise data-entry, documentation, computing, and reporting environment. In this environment, a
user can develop risk scenarios that describe various key aspects of the hazard, the food, and the
processing of the food as it relates to the fate of the hazard within the food. An FDA-iRISK scenario
includes seven elements: the food, the hazard, the population of consumers, a process pathway (i.e.,
food production, processing and handling practices), consumption patterns in the population, dose
response relationships, and burden of disease measures associated with health effects (e.g., losses in
disability-adjusted life years, or DALYs). Once the user has described these key elements, the tool is
capable of combining the user’s input into a quantitative risk assessment model (i.e., a risk scenario)
that estimates the risk of illness or health burden to the consumer. The results of this model are
presented to the user in the form of reports (e.g., in PDF format), allowing the user to study the
implications of the food and hazard properties that they have entered. For risk assessment model
development, FDA-IRISK is intended to be used by users who are knowledgeable about the hazards,
foods and processes that they are describing, but who may not be familiar with risk assessment
methodology, particularly as it pertains to developing quantitative estimates of risk.

The tool provides for rapid, quantitative risk assessment. The assessment is rapid in the sense that the
user can control, to an extent, the level of complexity of the model. In addition, by maintaining a
structured database of the user’s previous work, and by allowing copying and sharing of risk assessment
model elements, significant efficiencies in the overall conduct of risk assessment activities can be gained
by an individual user, or groups of users who choose to share model elements amongst each other.

It is important to understand that FDA-iRISK itself does not contain or provide any scientific data other
than what has been entered explicitly by the user. Users of FDA-iRISK provide all of the data,
assumptions, and knowledge about hazards and foods. The purpose of FDA-IRISK is to provide an
appropriate database and computational infrastructure to support a majority of the types of calculations
typically required in risk assessments applied to food safety. A key design principle behind FDA-IRISK is
that the combination of the user’s technical knowledge and the reliability associated with the
computational infrastructure should ensure higher quality and more productive risk assessment activity.
Key among the benefits is the avoidance of common conceptual and mathematical challenges that can
make quantitative risk assessment either too difficult or too error-prone for some potential users.

As part of the computational infrastructure, FDA-IRISK allows for most quantitative parameters in a
model to be characterized in the form of probability distributions, intended to describe the variability in
various aspects of the system being described. When the user includes variability distributions, FDA-
iRISK performs Monte Carlo simulation to combine the impact of variability from all user inputs into the
final estimates of risk. FDA-iRISK also provides the option of specifying quantitative descriptions of
uncertainty, or so-called Second Order Monte Carlo simulation, to the majority of model parameters.
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A key design driver for FDA-iRISK is to support comparative risk assessment. A key challenge in
comparative risk assessment is the generation of estimates that stem from very diverse hazards, which
may have different exposure patterns and very diverse health consequences ranging from very mild to
fatal. This requires a common measure of risk that can be compared across both acute and chronic
hazards and both microbial and chemical hazard types.

A risk estimate can be generally described as having a numerator and a denominator. The numerator
generally describes the extent of harm. The denominator describes the context (e.g., the timeframe, the
number of people, the amount of food consumed, etc.) in which the harm occurs. There are a great
variety of combinations of numerator and denominators, for example:

e Cases of illness per year

e (Cases of illness per million servings of food
e Fatalities per million persons per year

e Lifetime probability of cancer per consumer

In different contexts, each of these combinations has potential value to support different types of
decisions and comparisons. The current choices of numerator in FDA-iRISK are Disability-Adjusted Life
Years (DALYs), Quality-Adjusted Life Year (QALY) Loss, and Cost of lliness (COI). These choices are
justified and described below.

Note: Users may override the default risk estimates for ranking purposes when generating reports (see
Section 1.4 Ranking Options).

1.1 Choices for Numerator (DALYs, COI, or QALY Loss)

A wide variety of hazards and associated health outcomes are associated with foodborne hazards. To
accommodate this variety, two composite measures of harm are included in FDA-iRISK:

e Disability-Adjusted Life Years (DALYs): This measure has been used internationally to compare
the burden of disease for a variety of health outcomes. As a health metric, the DALY integrates
the severity and duration of health outcomes, and the relative frequency of each outcome, and
provides a measure that accommodates both non-fatal and fatal outcomes. The DALY measure
is very similar in concept to the measure of Quality-Adjusted Life Years (QALYs), but is more
common in the current food safety literature (Havelaar et al., 2012).

e Quality-Adjusted Life Years (QALY) Loss: QALY is a measure of disease burden (Batz et al., 2014)
similar in many respects to DALYs. However, where DALYs quantify health burden in terms of
increasing disability, QALYs quantify health burden in terms of decreasing utility. With DALYs, a
severity of 1 indicates death where a severity of O indicates perfect health. Conversely, with
QALYS a utility of 1 indicates perfect health where a utility of 0 indicates death. For compatibility
with how FDA-iRISK computes risk, QALY Loss is used instead of QALY.

e Cost-of-lliness (COI): This measure allows for the accumulation of the economic cost of iliness as
a composite measure that integrates the health burden and other societal burdens of illness
such as lost productivity, medical costs, and other economic indicators of societal burden (Minor
et al., 2015.
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In all cases, the user specifies the array of individual outcomes or cost category to be considered, and
assigns appropriate parameters to quantify the severity and duration (for DALYs), the utility loss and
duration (for QALY Loss), and the cost per case (for COIl) for each outcome or cost category considered.
In the case of DALYs and QALY Loss, the frequency of the health outcome is also specified by the user.
The frequency of each health outcome is used to provide a frequency-weighted burden, or average
burden per case.

The average DALY per case is given by:

DALY =)'S,; xD; xw,
i

Equation 1

where:

. Sj is the severity of health effect |jfor a given hazard, expressed on a scale from 0 (no

disability) to 1 (death).

) Dj is the duration of health effect |, expressed in years. In the case of death, duration is
expressed as years of life lost based on the age of the person affected, and severity is set to the
maximum value of 1.0.

e W, is the fraction of cases in which health endpoint J occurs.

For example, a DALY for liver cancer might be based on a combination of morbidity and mortality
endpoints:

Table 1_1. DALY calculation based on health endpoints

Health Endpoint Severity | Duration Fraction of DALY for
(years) Cases Endpoint
Morbidity: non-fatal liver cancer | 0.2 15.1 0.05 0.1510
Morbidity: fatal liver cancer 0.56 0.4 0.95 0.2128
Mortality: fatal liver cancer 1 20 0.95 19.000
Total DALY per case: | 19.3638

For QALY Loss calculations, the average QALY Loss per case is given by:

QALYLoss =D UL, x D; xw,
j

Equation 2
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where:

. ULJ- is the loss of utility of health effect | for a given hazard, expressed on a scale from 0 (no

loss) to 1 (death).
° Dj is the duration of health effect j, expressed in years. In the case of death, duration is

expressed as years of life lost based on the age of the person affected, and utility loss is set to
the maximum value of 1.0.

® W; isthe fraction of cases in which health endpoint J occurs.

For COlI calculations, the average cost per case is given by:

COI =) C, xw,
i

Equation 3

where:
. Cj is the cost per cost category (currency is unspecified).
* W, is the fraction of cases for which this cost would be expected to be incurred.

The average DALY per case, QALY Loss per case, or the average COI per case, is then multiplied by the
number of cases of illness predicted by the FDA-IRISK simulation model to yield the overall burden of
disease.

1.1.1 Applying External Sources of DALY, QALY Loss, and COI Estimates

If an external source is available that provides an estimate for the average DALY loss per case of illness,
QALY Loss per case, or the average cost per case of illness, the user has the option of entering this
number directly (i.e., without specifying the individual health outcomes or cost categories). This is
treated the same way as the average DALY per case, average QALY Loss per case, or average COIl per
case computed as described above.

1.1.2 Number of Illness as a Numerator in FDA-iRISK

In addition to the built-in health metrics, users can choose illnesses for risk ranking. Users can also use a
value of 1 for the burden of disease (e.g., DALY) so that the numerator in the risk estimate is equivalent
to the number of cases of illness. This is useful for comparing to other estimates of the number of cases.
However, while the number of illnesses can be used as a metric for risk ranking for one hazard across
different foods, due to the great diversity in the harm associated with different hazards and their
associated health outcomes, the DALY, QALY Loss, or COI is recommended for use in ranking exercises
across different hazards.

1.2 Choice for Denominator (per Year)

In addition to providing a common measuring stick for the harm associated with foodborne disease, it is
necessary to provide a common context. For example, it would be inappropriate to compare two
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numerical results where one is expressed as cases per million persons and the other is expressed as
cases per year.

FDA-iRISK employs the common denominator in units of time, specifically one year in a user-specified
population. For chronic hazards, where risk accumulates over a lifetime of exposure, the lifetime risk is
divided by the total duration of the user-specified life-stages in the population to yield an annualized
risk. This measure indicates the amount of the overall risk that can be attributed to each year of
consumption, on average over the lifetime.

FDA-IRISK provides users with an option to override the default method for chronic hazards. That is, if
only risk scenarios for chronic hazards are selected, the user can instruct FDA-iRISK to report the lifetime
risk instead of the annualized risk. This option is not available when risk scenarios for acute and chronic
hazards are combined in the same ranking report.

1.3 The Overall Calculation of Risk

For each food-hazard combination consisting of food f and hazard h , the burden of disease is given by:

Burden, x P, , xS

Burden, , = T

Equation 4

where:

Burden,, is the average burden (in DALYs, QALYs or units of currency) per case of illness for
hazard h.

e P, is the probability of a case of illness for the food-hazard combination f,h, given a

particular dose and dose response relationship.

e S, scales the result according to the number of consumers (for chronic exposures) or the
number of eating occasions (for acute exposures), and is equal to the user-defined number
of consumers for chronic exposures or the number of annual eating occasions for acute
exposures, for food f . (The amount of consumption, e.g., serving sizes, average intakes, is
included in the estimate of dose).

e T isused to provide a comparable time-scale. For chronic hazards resulting from cumulative
exposure, the value is generally annualized by dividing by the total duration of exposure

(i.e., T = total lifespan). However, for risk scenarios for chronic hazards, T=1 when the user
instructs FDA-iRISK to not annualize the results. T=1 for acute hazards in all cases.

This measure incorporates both the numerator (the burden or COIl) and the denominator (per year)
since the extent of exposure is expressed per year (number of eating occasions per year) for acute
hazards and the burden of disease is generally annualized (by dividing the lifetime risk by the duration of
exposure) for chronic hazards. As noted above, however, a user may specify not to compute annualized
results for chronic exposures.
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1.3.1 Probability of Illness: Acute Hazards

For acute hazards the probability of illness is:
Pin = E[P(gh | ADf,h)>< P(Vh | 5h)x P.]

Equation 5

where:

. P(gh | ADf]h) is the probability of response provided by the dose response model specified for
hazard h, given ingestion of dose AD | .

. P(y/h |gh) is the probability of illness given response &, occurs if &, is an endpoint other than

frank illness. For example, if the dose response relationship predicts infection only, this value
takes into account that illness may only occur for a fraction of the cases of infection.

e P, is the prevalence of contaminated units of food at the point of consumption, provided by the
process model.

e F denotes the expectation (e.g., the mean) of the value in the brackets, as computed from the
mean of the iterations within a Monte Carlo Simulation.

The calculation of dose is the result of the Process Model element of FDA-IRISK. (The process model is
described in Section 2 Estimation of the Extent of Contamination: Process Models.)

1.3.2 Probability of Illness: Chronic Hazards

For chronic hazards the probability of illness is:
Pin = P(gh | I—ADDf,h)>< P(Vh |5h)

Equation 6

where:

. P(gh | LADDf,h) is the probability of response provided by the dose response model specified
for hazard h, given ingestion of lifetime (or long-term) average daily dose LADD; | .
. P(]/h |8h) is the probability of illness given response &, occurs if &, is an endpoint other than

frank illness.

The calculation of dose is the result of the Process Model element of FDA-iRISK.

1.4 Ranking Options

When users request ranking reports from FDA-iRISK, they have the option to specify one of four ranking
options based on the risk estimates. The user can choose to rank the scenarios by:

e Health Metric (e.g., Total DALYs)
e Health Metric per eating occasion or consumer

September, 2016 Page 6



FDA-iRISK® 4.0 Technical Document

e Total llinesses
e lllnesses per eating occasion or consumer
e Exposure (Dose)

Note: While this provides different options for ranking, it does not change the risk estimates computed
for each risk scenario or exposure only scenario.

2 Estimation of the Extent of Contamination: Process Models

The FDA-IRISK process model is responsible for generating the values for unit mass, prevalence, and
concentration of hazards in distinct units at the point of consumption.

The user provides the initial values of the three variables and the values of parameters that define

various process stages that may affect the mass, prevalence, and/or concentration (see Figure 1).

Initial Conditions: Changes in unit mass, prevalence Final Conditions:
and/or concentration during

processing:

Final
Prevalence

Interim

Initial Prevalence

Prevalence
Initial Interim Final
Concentration Concentration Concentration

User-defined User-defined Final
Processing Stage(s) Processing Stage

Figure 1. Mathematical structure of a process model. The user inputs initial conditions and defines sequential
process stages that affect the mass, prevalence, and/or concentration of the hazard in the food. FDA-iRISK
recalculates these values after every stage until the final values are obtained.

Whenever the user specifies a probability distribution for a quantity required in FDA-iRISK, the
calculation from that point forward (e.g., any subsequent quantities that depend on this distributed
guantity) is computed using Monte Carlo simulation (strictly speaking, FDA-IRISK uses Random Latin
Hypercube Sampling). The distribution is intended to describe variability in various physical properties
and processes. It is not intended to describe uncertainty which the user can assign to individual
parameters separately.

Each iteration within the simulation corresponds to a distinct variant of food exposure that is the result
of the calculations that include the values drawn randomly from the user-specified distributions. The
FDA-iRISK process model tracks two probability distributions in parallel during the assessment of a single
food-hazard combination. The first considers the variability in the level of contamination in
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contaminated units and is conditional on a unit being contaminated at a level >0. The second
distribution is an array of corresponding weight factors (termed “prevalence” within the model, and in
this description) which, on an iteration-by-iteration basis, takes account of the likelihood that a unit is
contaminated at a level >0. The weights are a combination of the initial prevalence of contamination
and the impact of various process changes that require adjustment of the probability of contamination
for the variant of exposure that each iteration describes. Each iteration models a distinct and separate
pass of a batch of food units through the process model. All of the process types, as described in
subsequent sections, act on the concentration and prevalence value of each iteration separately. In no
case would the concentration and prevalence values of units from one iteration be merged with those of
another iteration. If units are pooled, for example, they are pooled within each iteration and all
contaminated units in the pooled batch are assumed to share the same contamination level and
prevalence associated with that iteration.

2.1 Description of Initial Contamination

The user identifies a point in the production and process change from which modelling of contamination
will start, and specifies the initial conditions representing that point in the production and processing
chain.

The initial unit quantity of a unit of food is specified in terms of mass or volume, according to the choice
made in the definition of the food. The user selects or clears a check box to register the presence or
absence of contamination at this stage. If contaminated, a fixed value for the initial prevalence must be
provided. Finally, for prevalence # 0, a concentration of hazard in the food must be defined either as a
fixed value or as a distribution (e.g., Beta PERT, Cumulative Empirical, Normal, Triangular, or Uniform).
At the initial stage, based on the user-defined prevalence, each unit of food has the same probability of
being contaminated.

The numerator units for concentration are logio count for microbial hazards, where the count refers to
colony-forming units (cfu), plaque-forming units (pfu), or other units as specified in the hazard
definition. The numerator units for chemical concentration are expressed in units of the mass of hazard.

The choice of units for the denominator (mass or volume) are specified when the food is defined.

In both cases, the denominator unit depends on the unit choice made for the food (either mass or
volume). For example, a microbial concentration might be expressed as 3 logio cfu/g or 5 logio pfu/ml
whereas a chemical concentration might be expressed as 2 ug/kg or 2 ng/I.

Additionally, in the case of microbial hazards, the concentration specified must result in at least one
count (cfu, pfu, or other) in the initial unit mass specified. This is due to the definition of concentration
as including only contaminated units of food (i.e., not allowing zero concentration, since this is captured
by the estimate of prevalence). For example, a concentration of 1 logio cfu/kg would not be permissible
if the initial unit mass was specified as 1 gram, as this would result in an initial microbial load of 0.01 cfu
(i.e., less than one organism). Fractions less than 1 are not allowed for estimates of concentration due to
the definition of concentration as applying only to contaminated units. A concentration of 1 logio cfu/g
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(i.e., 10 cfu/g on the non-log scale) would be acceptable if the unit mass was 0.1 grams, as it would
result in an initial microbial load of 1 cfu in the initial unit mass of 0.1 gram.

For microbial hazards, the user may also specify a maximum population density (MPD). If the MPD is
specified, the concentration of the hazard in the food is compared with the MPD at each stage of the
process model and prior to consumption. If the concentration exceeds the MPD, the concentration value
is set to the MPD.

These restrictions do not apply to chemical hazards.

2.1.1 Initial Prevalence and Unit Size

The prevalence value specified must be the prevalence of contaminated units for the unit size specified.
For example, if the unit size is for a head of lettuce, the prevalence must be the proportion of heads of
lettuce that are contaminated and not the proportion of fields or shipping crates that are contaminated.
Initial prevalence must be a fixed value. However, unit size may be defined as a fixed value or a
distribution.

2.1.2 Distributions for Initial Concentration and Unit Size

The following distributions are available in FDA-iRISK. Note that not all distributions are available in in all
context. For example, Normal is not available for unit size as the unit size must have fixed bounds. Users
need to define the parameter values for a distribution they select.

Table 2_1. Distributions for initial concentration and unit size

Distribution

Parameters

Fixed Value

Value

Beta General

Alpha, Beta, Lower bound, Upper bound

Beta PERT*

Minimum, Mode, Maximum

Chance

Probabilities, Values (corresponding to probabilities).

Empirical (cubic)

Probabilities**, Values (corresponding to probabilities)

Empirical (linear)

Probabilities**, Values (corresponding to probabilities)

Gamma Shape, Rate
Lognormal Mean, Standard Deviation
Normal Mean, Standard Deviation

Normal (Truncated)

Mean, Standard Deviation, Lower bound, Upper bound

Triangular

Minimum, Mode, Maximum
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Distribution Parameters

Triangular (Percentiles) | 5th Percentile, Mode, 95th Percentile

Triangular (Truncated) Minimum, Mode, Maximum, Lower bound, Upper bound

Uniform Minimum, Maximum

Uniform (Percentiles) 5th Percentile, 95th Percentile

*Also known as PERT

**Must have values for probabilities of 0 and 1.

2.1.3 Linking to other Process Models

When defining the initial conditions an option is available to link to another process model. Linked
Process Models are useful, for example, to define foods that are contaminated because they contain a
particularly problematic ingredient (that may be found in a variety of foods), or to describe the type of
branched process model that results from variations in downstream processing (e.g. frozen vs.
refrigerated finished product, different styles of preparation by consumers).

An “upstream” model is built, composed of initial conditions and zero or more process stages, to
represent the common conditions and process steps prior to consumer preparation, for example. Any
model built subsequently can be “linked” to this, becoming one of any number of “downstream”
models. The upstream model needs to be defined first, using the option “Single Set of Parameters”.

In contrast, when defining the “Downstream” model(s), the user selects “Upstream Process Model” to
view the menu of models to which to link the new model. After having made the selection and selected
“Change Method”, a dropdown menu will appear that presents the selection of potential upstream
models. The downstream model now takes the upstream model endpoints from the process model as
the initial conditions.

Note that in order for linking to be possible, the hazard must be the same in both upstream and
downstream models, and the units of measurement of the food must be the same. Linking does not
allow branching within a single model.

A special case of linked process models converts a microbial pathogen to a chemical contaminant. In

this case, the microbial process model constitutes the upstream model, and the chemical process model
is the downstream model. The two are linked by means of a conversion rate that relates the amount of
toxin or other chemical produced per unit of the microbe. Two options are available for the conversion:

1) A linear conversion (in the standard form y=mx+c) where CT= Cy * R + | where Cy = microbial
concentration (e.g. cfu/g), R = Conversion Rate (e.g. mg/cfu), | is the intercept (which can be set to 0)

and CT = Toxin concentration (e.g. mg/g). The user will specify the units used for the conversion rate,

and unit conversions are applied in the model as appropriate.
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2) A log-linear conversion (in the standard form Log(y)=m*Log(x)+c) where LogCT= LogCm * LR + LI

where LogCwm = microbial concentration (e.g. Log cfu/g), LR = Conversion Rate (e.g. Log mg/Log cfu), Ll is

the intercept (which can be set to 0) and LogCT = Toxin concentration (e.g. Log mg/g). The user specifies
the units used for the conversion rate, and unit conversions are applied in the model as appropriate.

In both cases, the user can specify an optional Threshold (in log cfu/g) below which no toxin is produced.

The end result is a chemical concentration in the food. From this point forward, FDA-iRISK treats the
associated scenario as a chemical hazard type. As with standard linking models, in order for linking to be
possible, the units of measurement of the food must be the same.

2.2 Mathematical Description of the Process Stage Types

In this section, the following notation is used:
i Current stage of the process model being described.

C Concentration of the hazard in contaminated food units at the end of stage 1, expressed

in non-log units for microbial pathogen hazards and chemical hazards.

P Prevalence (probability of contamination) of units of food contaminated with the hazard

at the end of stage | .

M. Mass of a unit of food at the end of stage 1 .

X, ., Value of X at the previous stage of the process model, i —1, where X e {C, P, M} ,

for example C, .

Notes:

e The subscripts h and f are omitted in this section for clarity; however, any given process

model is specific to a single food-hazard combination.
e While some parameters for microbial pathogens are specified on the logio scale, values are
converted as needed to compute concentration on the non-log scale.

As discussed above, FDA-IRISK conducts a Monte Carlo simulation to describe the prevalence,
concentration, and other intermediate calculations from any point in the model downstream of (i.e.,
dependent upon) a quantity that the user has specified as a probability distribution. As such, each of the
guantities expressed in this description could be computed separately in each of N iterations in a Monte
Carlo simulation. To simplify the notation we have suppressed the subscript denoting a specific
iteration.
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2.2.1 Variability Distributions for Process Types

The table below lists the variability distributions that are available in FDA-IRISK for the following process

types:

e Increase by Growth

e Increase by Growth Model

e Increase by Addition

e Increase by Cross Contamination (Amount)

e Increase by Cross Contamination (Concentration)

o Decrease

e Decrease by Inactivation Model

e Evaporation/Dilution
e Partitioning
e Pooling

e Redistribution (Partial)
e Set Maximum Population Density

Table 2_2. Distributions for process types

Distribution Parameters
Fixed Value Value
Beta Alpha, Beta

Beta General

Alpha, Beta, Lower bound, Upper bound

Beta PERT*

Minimum, Mode, Maximum

Chance

Probabilities, Values (corresponding to probabilities).

Empirical (cubic)

Probabilities**, Values (corresponding to probabilities)

Empirical (linear)

Probabilities**, Values (corresponding to probabilities)

Gamma - Shape, Rate
LogUniform Mean, Standard Deviation
Normal Mean, Standard Deviation

Normal (Truncated)

Mean, Standard Deviation, Lower bound, Upper bound

Triangular

Minimum, Mode, Maximum

Triangular (Percentiles)

5th Percentile, Mode, 95th Percentile
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Distribution Parameters

Triangular (Truncated) Minimum, Mode, Maximum, Lower bound, Upper bound

Uniform Minimum, Maximum

Uniform (Percentiles) 5th Percentile, 95th Percentile

* Also known as PERT
**Must have values for probabilities of 0 and 1.

The process types: Placeholder, No Change, and Redistribution (Total), do not have variability
distributions associated with them.

2.3 Process Types for Microbial Hazards

Note: If the user specifies a maximum population density (MPD) for the hazard as part of the initial
contamination, the concentration of the hazard in the food is compared with the MPD at the end of
each stage of the process model. If the concentration exceeds the MPD, the concentration value is set to
the MPD. For more information about MPD, see Section 2.3.17 Set Maximum Population Density (MPD).

The process types implemented in FDA-IRISK are similar in nature and purpose to those previously
published in the literature (e.g., Nauta, 2002, 2005 & 2008; ILSI, 2010).

The process types include:

e Increase by Growth

e Increase by Growth Model

e Increase by Addition

e Increase by Cross Contamination (Amount)
e Increase by Cross Contamination (Concentration)
e Inspection

e Decrease

e Decrease by Inactivation Model

e Pooling

e Partitioning

e Evaporation/Dilution

e Redistribution (Partial)

e Redistribution (Total)

e Set Maximum Population Density

e Sampling (OC Curve)

e Sampling (Simple Poisson)

e No Change

e Placeholder
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2.3.1 Increase by Growth-Microbial

To describe a growth process, the user specifies:

e G, the multiplicative increase in the number of microorganisms, expressed in logio units (e.g., 1
logio denotes a 10-fold increase in the concentration of organisms). This can be specified either
as a fixed value or as a variability distribution.

Case 1: When C; , =0 or when P_, =0, then the new concentration and prevalence following the

stage are also 0.

Case 2: The concentration after growth occurs at stage i is:
C = CH><10G

Equation 7

The concentration is evaluated taking into account the MPD as described above. Prevalence is

unaffected by growth and therefore, P, = P,_, . Mass is similarly unaffected, M; =M, ;.

The following example illustrates how many of the process types are applied during the Monte Carlo
simulation. Assume the user defines G as a Uniform distribution (0,4) and the concentration at the end
of the previous stage is as listed for each iteration in the table below. FDA-iRISK will draw samples from
the distribution for G using the Random Latin Hypercube method. The following may result for the first
five iterations of the Monte Carlo simulation of the growth stage:

Table 2_3. Example: application of process types during simulation

Iteration 1 2 3 4 5
Ci.1(cfu/g) 0 2 4 10 5
Sample of G 2.4 3.1 0.5 1.3 1.9
10¢ 251.2 1,258.9 3.15 20.0 79.4
Ci(cfu/g) 0 2,518 12.6 200 397

2.3.2 Increase by Growth Model-Microbial

With the increase by growth process type, the user specifies the amount of growth directly. With the
increase by growth model process type, the user selects pre-defined growth and inactivation predictive
models (see Section 3 Predictive Models), and provides the time, temperature and other parameters
required by the model. The process type then computes a growth rate and lag phase duration based by
applying the time, temperature and other parameters (e.g. pH and to the selected growth and lag
models.
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The increase by growth is calculated from Loglncrease = GR;t; where GR; is the growth rate at
temperature T, and t; is the time that growth can occur, given by t—lag; , where t —lag; is the lag

time at temperature T .

Once the increase by growth amount is calculated, growth is computed using the same method
specified above for the Increase by Growth process type. If the user wishes to set the lag to 0, they must
first create a specified lag model for the hazard and set the lag time to 0.

2.3.3 Increase by Addition-Microbial

The Increase by Addition process type is specified using two parameters: the amount (not
concentration) of contamination added (on the logio scale) and the likelihood of that addition occurring.
FDA-IRISK models increase by addition at the batch level. That is, likelihood is defined as the likelihood
that the amount of contamination specified will be added to each unit in a batch.

Four states may result from the application of an increase by addition process:

i) A previously contaminated unit did not experience addition.

ii) A previously contaminated unit experienced addition.

iii) A previously uncontaminated unit experienced addition.

iv) A previously uncontaminated unit did not experience addition.

As the fourth state does not pose any health risk (no contamination), it is not considered separately.
Instead, it is incorporated with the first state using prevalence (the proportion of contaminated units in
a batch).

To allow for low likelihood values but still maintain an efficient simulation model, FDA-iRISK implements
separate pathways to model each state and applies a weight to each pathway that is used to re-
integrate the pathways when computing risk downstream in the model. Each state will have a different
net concentration and prevalence result. The following table summarizes how concentration and
prevalence change for each state, and the weight associated with that state.

Table 2_4. Increase-by-Addition (microbial): changes in concentration and prevalence (definition)

State (Pathway)

Concentration After
Addition Process

Prevalence After
Addition Process

Probability of Pathway for
Any Given Eating Occasion

No addition Ci=0C Pi=Pis (1-Pq)
Addition, previously C = Cir+ (108 / M) 1 Pi1* Pq
contaminated

Addition, previously 10"/ M4 1 (1-Pi1) * P

uncontaminated

where:
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e Aisthe amount added per unit on the logio scale. It is not a concentration value.
e P, is the probability of addition to any unit.

For example, assuming:

e |nitial Contamination: 2 logio cfu/g (100 cfu/g)

e |Initial Prevalence: 0.3

e UnitMass:50g

e Addition Amount: 2.69 logio cfu (500 cfu) per unit
e Addition Likelihood: 0.001

The resulting pathway states would be:

Table 2_5.Increase-by-Addition (microbial): changes in concentration and prevalence (example data)

State (Pathway) Concentration After | Prevalence After Probability of Pathway For
Addition Process Addition Process Any Given Eating Occasion
No addition 2 logio cfu/g 0.3 0.999
(100 cfu/g)
Addition, previously 2.04 logio cfu/g 1 0.0003
contaminated (110 cfu/g)
Addition, previously 1 logio cfu/g 1 0.0007
uncontaminated (10 cfu/g)

Mass is unaffected: M; =M, ;.

For microbial (acute) hazards, FDA-iRISK assumes any individual might consume a serving from any given
pathway in proportion to its relative frequency of occurrence. Therefore, the probability of illness is
computed downstream for each model pathway separately, and then the frequency-weighted average
over all of the pathways is taken as the final probability of illness.

If pooling occurs downstream from an addition process, food units are pooled within each pathway and
are not pooled across pathways. For information about how pooling is implemented with regard to
other process types, such as addition, see Section 2.3.9 Pooling-Microbial.

2.3.4 Increase by Cross Contamination (Amount) - Microbial

This Increase by Cross Contamination (Amount) process type adds contamination to a unit using a
defined pool of organisms and transfer rate.

The user is asked to input the following:

e The likelihood of sufficient contact to cause the transfer (i.e., set to 1 in the case where transfer
of some degree always occurs)
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e The amount of contamination (i.e. number of cells or microorganisms) in the environmental
pool (e.g. Log CFU). This amount remains unchanged after transfer and no update is made
following a cross-contamination event. The amount can be expressed as a distribution.

e The transfer rate from the pool, expressed as either percentage or Log10 percentage.

The amount added by this process type is computed by multiplying the number of cells or
microorganisms in the environmental pool by the transfer rate. Once the amount is determined, the
same logic described above for the Increase by Addition process type is applied.

2.3.5 Increase by Cross Contamination (Concentration) - Microbial

The Increase by Contamination (Concentration) process type adds contamination to a unit using a pool
with a defined concentration and amount of material, and a transfer rate.

The user is asked to input the following:

e The likelihood of sufficient contact to cause the transfer (i.e., set to 1 in the case where transfer
of some degree always occurs)

e The concentration (Log CFU per ml or g) in the environmental pool. This concentration remains
unchanged after transfer and no update is made following a cross-contamination event. The
concentration can be expressed as a distribution.

e The amount of material in the pool (ml or g). This amount remains unchanged after transfer and
no update is made following a cross-contamination event. The amount can be expressed as a
distribution.

e The transfer rate from the pool, expressed as either percentage or Log10 percentage.

The amount added by this process type is computed by multiplying the concentration by the amount of
material in the environmental pool and by the transfer rate. Once the amount is determined, the same
logic described above for the Increase by Addition process type is applied.

2.3.6 Decrease-Microbial

Assumption: The Decrease process type is not capable of the complete removal of the hazard from the
system. There is always a non-zero chance of survival of the inactivation process.

Where:

e d, is the user-specified logio reduction for a microbial hazard at stage i.

e M, is the unit mass at stage 1 .
Three cases are defined as follows:

Case 1: When C; , =0 or when P_, =0, then the new concentration and prevalence following the

stage are also 0.
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Case 2: When the user-specified distribution includes the possibility of some values where di,n <0 in

logio units, then no decrease is applied for these specific iterations n, and the concentration and
prevalence are unchanged from the previous values (e.g., effectively implementing a 0-log decrease, or
no change).

Case 3: When the user-specified decrease is d;, >0in logio units, then the new concentration is a

random variable drawn from the binomial distribution (under the assumption that each organism has
the same, independent probability of survival), conditioned upon there being at least one surviving
organism in a contaminated unit. The fact that some units may become completely de-contaminated
with respect to this hazard is addressed by adjusting the prevalence value associated with this unit.

C, ~ pos_binomial (N, ,,0,)/M,
Equation 8
where:
e the probability of survival of an individual organism is:
Pr =10
Equation 9
and:

e the microbial load prior to the decrease is (rounded to be an integer for use in the binomial
calculation):

N, , =round(C,_, xM.,)

Equation 10

The positive binomial function returns random samples from the binomial distribution, conditional upon
the value being non-zero. For a description of the positive binomial function, see Section 6 Positive Only
Binomial and Poisson Distributions.

To account for the probability that removal of contamination will result in individual units becoming
uncontaminated (i.e., less than one cfu or pfu per unit), the prevalence after the decrease stage is given
by adjusting the prevalence value from the previous stage by the probability that some contamination
will remain after the decrease in this stage.

The probability of survival of one or more organisms, given an individual survival probability, o, , and a

starting microbial load of N;_, is given by:

ps=1-1-p)""

Equation 11
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Therefore, the final probability that this unit is contaminated, is given by multiplying the probability that
it was previously contaminated by the probability that one or more organisms will survive the decrease
process:

I:)i = I:)i—l X ps
Equation 12

The unit mass is unaffected: M, =M, ;.

2.3.7 Decrease by Inactivation Model-Microbial

(24
The log decrease is calculated from the Weibull model L = (%) , when shape = 1 the Weibull becomes

the familiar linear model. The user first defines inactivation models for the hazard (see Section 3
Predictive Models). When defining this process type, the user selects one of the pre-defined inactivation
models then assigns values for time, temperature and other parameters required by the model (e.g. z-
value). FDA-IRISK uses these models compute a D-Value (the D-value is time for reduction of one logio in
the linear model or the first logio in the Weibull model when shape # 1), and then applies the Weibull
model to compute the amount of decrease. From this point, FDA-IRISK applies the same logic as the
Decrease process type described earlier.

2.3.8 Mass Change - Microbial

The Mass Change function addresses both Pooling and Partitioning process types. The function
compares the previous unit size (by mass or volume) with the new unit size for each iteration, and
selects pooling when the new size is larger and partitioning when the new size is smaller. In the case

where the new size is the same as the previous size, no change is made. When Ci_1 =0 or when

P._, =0, then the new concentration and prevalence following the stage are also 0. Otherwise, the

pooling or portioning functions are applied as appropriate.

Assumption: Microbial hazards are distributed randomly in each simulated unit of food and their
presence in a sub-sample of the unit of food follows a Poisson distribution.

2.3.9 Pooling-Microbial

The Pooling process type addresses the possibility that the new unit size may result from the
combination of both contaminated and uncontaminated units.

First, the number of portions that need to be constituted to determine the new unit mass is determined
by dividing the new unit mass by the previous unit mass. This will result in X whole units and a fraction f
(0<f<1) of one unit.

Prevalence is determined by using the previous prevalence to compute the probability that one or more
of the X whole units is contaminated:
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Pupir=1—-(1- Pi—1)X
Equation 13

and the probability that the fraction is contaminated is calculated by the probability that the unit from
which it was drawn is contaminated, multiplied by the probability that the fraction contains one or more
of the original microorganisms in the unit:

Ni—l =round (Ci—l xM i—l) ’

Equation 14

which are assumed to have a probability of being in the fraction equal to the fractional mass of the
fractional unit:

Pfrac =P_4 X (1 - (1 - f)Ni_l)-

Equation 15

The final new prevalence is computed by calculating the probability that none of the inputs (neither the
whole units nor the fractional units) to the new mass (the “pool”) are contaminated, and subtracting
this value from one:

Py =1~ (1~ Pynit) X (1 = Prac)
Equation 16

The new concentration is determined by randomly sampling from the three possibilities:

e Only one or more of the whole units is contaminated, with probability P, ,;; X (1 - mec). The
resulting concentration is C, = posPoisson( posBinom(X,P_ )x N, )/M,.

e Only the fractional unit is contaminated, with probability Pr.qc X (1 — Pyyie). The resulting
posBinomial(N;_4,f)

M; ’
e Both are with probability Pr,qc X Pypi:- The resulting contamination is:

contamination is C; =

C; = (posPoisson(posBinomial(X, P;_;) X N;_1) + posBinomial(N;_4, f))/M;.
Equation 17

The mass M is set equal to the new unit (or “pool”) size.

It should be noted that the process of pooling is not a completely random recombination of all of the
simulated units within the total Monte Carlo simulation. Rather, it is assumed that the pooling occurs
among units within a given iteration and addition pathway that have the same probability of
contamination and level of contamination as the previous unit simulated. An alternative concept of
pooling, where every simulated unit across all iterations has the potential to be included in a pool, is not
applied.
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The Poisson distribution is applied to simulate some variability in the actual contamination levels
between the units being pooled, with the expected value being the product of the number of
contaminated units and the expected number of micro-organisms in each. The positivePoisson function,
in particular, is used to ensure that the number of organisms returned from the Poisson distribution is
greater than zero.

2.3.10 Partitioning-Microbial

As the microbial hazard is assumed to be randomly distributed in the food, the new prevalence is the
probability that at least one micro-organism is present in the new, smaller unit size. The starting number

of micro-organisms available for partitioning to sub-unitsis N, , =round(C, ; xM. ;).

The probability that a micro-organism is in the smaller unit size, given a previously contaminated larger
unit, is equal to the fraction of the previous unit mass that the new unit mass represents. For example, if
partitioning 100 liters of product into 4-liter bags, there is a 4% chance of any single organism ending up
in a randomly selected new 4-liter unit. The prevalence is then adjusted by the probability that one or
more organisms will end up in a random smaller unit.

Ni_1
Psmall =|1— 1—( M, j
M

i-1

P =P_, xPsmall

Equation 18

The new contamination level is determined by using the positive binomial to sample the number of
micro-organisms that are in the new unit size using that probability.

The new concentration is the new randomly generated contamination count divided by the new unit
size.

M:
C; = pos_binomial (Ni_l,—L) /M;
M;_q

Equation 19

The mass M; equals the new, smaller unit size.

2.3.11 Evaporation/Dilution-Microbial

Assumption: Evaporation and dilution occur on a unit-by-unit basis and neither process adds or removes
contamination from the system.

The user specifies a value (fixed or variability distribution) representing the factor change in
concentration, resulting in one of two possible cases:
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Case 1: When C; , =0 or when P_, =0, then the new concentration and prevalence following the

stage are also 0.

Case 2: The new concentration is given by:

C =C_xg

1 I
Equation 20

where g; is the user-specified concentration change due to evaporation (&; >1) or dilution (0 < g, <1)

for a microbial hazard at stage i.
The mass is also adjusted, such that:
M; =M, /¢
Equation 21
The prevalence is unchanged P; = P;_;.

2.3.12 Partial Redistribution-Microbial

The user specifies a value, o defining the redistribution factor (i.e., the number of units among which
the contamination from one (previously contaminated) unit is spread).

Case 1: When C; , =0 or when P_, =0, then the new concentration and prevalence following the

stage are also 0.

Case 2: If the product of the redistribution factor and the previous prevalence equals or exceeds 1, this
stage becomes a total redistribution and that function is called instead (see below).

When the product of the redistribution factor and the previous prevalence is less than 1, the
concentration of a microbial hazard among contaminated units following a partial redistribution step is

given by:
1
V, NI 1 <w
C=1c
LN, >w
Equation 22
where:

e @ is the user-specified redistribution factor at stage .

e N, is the available microbial load, defined as:
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Ni—l =G,

XMy
Equation 23

The first case above refers to the case where there are not enough micro-organisms per unit to spread
the contamination as widely as the user-specified value suggests.

The prevalence of contaminated units is given by:

P =

FuxNiy Niy<o
P,xo N,

g >

Equation 24

Mass is unaffected: M; =M, ;.

2.3.13 Total Redistribution-Microbial

If the user specifies the Total Redistribution process type, no parameters are required to quantify this
process.

Case 1: When C; , =0 or when P_, =0, then the new concentration and prevalence following the

stage are also 0.

Case 2: The contaminated units are redistributed as widely as possible, subject to the availability of
sufficient numbers of organisms. For example, if the current prevalence is 1%, and the contaminated
units contain only 10 organisms, there will not be enough contamination to bring the prevalence up to
100%. The final prevalence will be 10%, with 1 organism in each unit. The new concentration following a
total redistribution is given by:

V, Ni—l <w
_ i
C=1a
i-1
SN, >
Equation 25
where the redistribution factor is calculated as:
1
w=—
P
Equation 26

and the microbial load is:
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Niy=CiyixMi,
Equation 27
The new prevalence is given by:
p_ PxN, N,;<o
' 1 N, >o
Equation 28

Mass is unaffected: M; =M, ;.

2.3.14 Sampling (OC Curve) - Microbial

This sampling process type simulates the act of rejection of product lots based on taking one or more
samples and detecting microbiological contamination. There are two sampling process types to choose
from: Sampling (OC Curve) and Sampling (Simple Poisson). (For information about Sampling (Simple
Poisson), see the next section.)

For the Sampling (OC Curve) process type the user enters or loads a file containing a set of data-points
that correspond to points on an OC curve with the Y-axis representing Probability of Rejection (P_reject)
and the X-axis representing concentration on the log10-scale. The P_reject curve must be monotonically
increasing. The probability of rejection of the sample from a food unit will be based only on the
concentration in the food unit and will be linearly interpolated between the provided data points.
Concentrations below and above the minimum and maximum concentrations will be assigned minimum
P_reject and maximum P_reject, respectively. The series of data points provided by the user data will
have increasing concentrations, and the corresponding probability can be user-specified as descending
(P_accept) or increasing (P_reject).

For example, the following user specified data-points that correspond to the OC Curve points:

Concentration Preject
1 _ 0
2 -1.5 0.05
] -1 0.1
4 -0.5 0.2
5 0 0.4
B 0.5 0.6
T 1 0.8
8 1.5 0.9
9 2 0.95
10 2.5 1

Results in the following OC Curve:
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Preject
°
a

2 1.5 -1 0.5 0 0.5 1 15 2 2.5

Concentration

The user has the option of uploading the data-points that correspond to the OC Curve points in the form
of a “comma-separated values” (.CSV), text (.txt) or an Excel (.xls) file

If the probability of contamination in the prior process stage for the given food unit is PrevPrior, the
probability of contamination at the end of the sampling process for the same food unit is:

PrevPost = PrevPrior x Paccept = PrevPrior x (1- Ptestx (1-e2%~™ P>

)

Equation 29

where:
o Ptestis the proportion of food units that are tested.

2.3.15 Sampling (Simple Poisson) - Microbial

The Sampling process type simulates the act of rejection of product lots based on taking one or more
samples and detecting microbiological contamination. There are two sampling process types to choose
from: Sampling (OC Curve) and Sampling (Simple Poisson). (For information about Sampling (OC Curve),
see the previous section.)

The Sampling (Simple Poisson) process type employs a single Poisson sample of fixed mass/volume.

First, the mass (M )of the sample Poisson sample is determined by:
m=nxs

Equation 30

where:

e N isthe number of samples.
e 5 isthe mass or volume of each sample.
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The mass of the Poisson sample is intended to be the final analytical sampling size (i.e., the unit of mass
or volume that is subject to enrichment such as 1 g, 10g, or 25g), rather than what may be a larger
physical sample taken from the food product (e.g., 100 gram samples taken, then mixed, with 25g of
mixed sample subject to enrichment). The sample size must be smaller than the current food unit size.

The probability that the sample will be positive is calculated using the simple Poisson function:
P(+|test) =1— @~C-m-pdetect
Equation 31
where:

e (C is the concentration in the food unit from the previous process stage
e M is the mass or volume of the total combined sample
e pdetect is the probability of detection of a single organism.

The probability of rejecting the sample is then:
P(reject) = P(+| test) x Ptest

Equation 32

where:

e Ptestis the proportion of food units that are tested.
By extension:
P(accept) =1— P(reject) =1— Ptest x (1—e Cmpdetet)

Equation 33

If the probability of contamination in the prior process stage for the given food unit is PrevPrior, the
probability of contamination at the end of the sampling process for the same food unit is:

PrevPost = PrevPrior x Paccept = PrevPrior x (1— Ptest x (L—e 0" mPPetecty)

Equation 34

Note: In the Simple Poisson Sampling process type, there is no assumed within-lot standard deviation.
The lot is assumed to be well-mixed with respect to contamination. If the user seeks to actively include
within-lot variability in concentration, they could use another tool that considers this (such as the
FAO/WHO tool at www.fstools.org) and transfer the resulting OC curve using the user-specified

Sampling (OC Curve) process type. Alternatively, the user could start with the Sampling (Simple Poisson)
process type in order to quickly explore the potential impact of sampling, and can explore the
importance of considering variations on within-lot variability using the FAO/WHO tool.

September, 2016 Page 26


file:///D:/0_RSI/00_TaskOrder%201%20Jan%202016/Technical%20Document/www.fstools.org

FDA-iRISK® 4.0 Technical Document

2.3.16 Inspection - Microbial
The Inspection process type uses the following parameters to simulate the relationship between

detectable concentration and the probability of rejection:

e Concentration at which point 50% of the contaminated product would be detected, DC50.
e Concentration at which point 95% of the contaminated product would be detected, DC95.
e Proportion of lots tested, Ptest.

The parameters DC50 and DC95 are used to define an inverse Probit curve that describes the
relationship between detectable concentration and the probability of rejection, specifically

Preject = CumNormal[C;_,,DC50, (DC95 — DC50)/1.645]

Equation 35

Where CumNormal is the built in Analytica function. This probability of rejection is then adjusted using
Ptest:

PrevPost = PrevPrior X (1 — Ptest X Preject)

Equation 36

2.3.17 Set Maximum Population Density (MPD) - Microbial

For microbial hazards, the user may specify the MPD as part of the initial conditions. If the MPD is
specified, the concentration of the hazard in the food is compared with the MPD at each stage of the
process model and prior to consumption. If the concentration exceeds the MPD, the concentration value
is set to the MPD.

The Set Maximum Population Density process type allows the user to set a new MPD at a designated
point in the process model. This change in MPD may correspond to the introduction of growth
inhibitors, evaporation, or other material changes to the food matrix. The value specified for a stage of
this process type will be used as the MPD value from that point forward in the process model.

For example, a value of 9 log cfu/g might be specified as the initial MPD value and then changed to a
value of 7 log cfu/g at a later stage in the process model using this process type.

2.3.18 No Change-Microbial

The No Change process type is designed for situations when the user wants, for the sake of
completeness and transparency, to include processing steps that have no effect on unit mass, hazard
concentration, or prevalence.

2.3.19 Placeholder-Microbial

The Placeholder process type is included for convenience as a temporary designation, while the process
model is being built but before the data necessary to populate it have been collected. This process type
is the only type that can later be changed to another type. It is distinguished from the No Change
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process type in that it indicates that the effect of unit mass, hazard concentration, or prevalence has not
yet been determined, and therefore the model should be considered incomplete.

2.4 Process Types for Chemical Hazards

Assumption: When present, and when added, chemical hazards are uniformly distributed throughout a
given unit of food. Different units of food, corresponding to different iterations within a Monte Carlo
simulation, may have different concentrations, but each unit is assumed to be very well-mixed with
respect to the chemical hazard.

2.4.1 Increase by Addition-Chemical

The Increase by Addition process type is specified using two parameters: the amount (not
concentration) of contamination added and the likelihood of that addition occurring. FDA-iRISK models
increase by addition at the batch level. That is, likelihood is defined as the likelihood that the amount of
contamination specified will be added to each unit in a batch.

Four states may result from the application of an increase by addition process:

i) A previously contaminated unit did not experience addition.

ii) A previously contaminated unit experienced addition.

iii) A previously uncontaminated unit experienced addition.

iv) A previously uncontaminated unit did not experience addition.

As the fourth state does not pose any health risk (no contamination), it is not considered separately.
Instead, it is incorporated with the first state using prevalence (the proportion of contaminated units in
a batch).

To allow for low likelihood values but still maintain an efficient simulation model, FDA-IiRISK implements
separate pathways to model each state and applies a weight to each pathway that is used to re-
integrate the pathways when computing risk downstream in the model. Each state will have a different
net concentration and prevalence result. The following table summarizes how concentration and
prevalence change for each state, and the weight associated with that state:

Table 2_6. Increase-by-Addition (chemical): changes in concentration and prevalence (definition)

State (Pathway) Concentration After | Prevalence After Probability of Pathway For
Addition Process Addition Process Any Given Consumer

No addition Ci=Ciz Pi=Pis (1-Pa)

Addition, previously Ci=Ci+A/ M) 1 Pi1* Pq

contaminated

Addition, previously A/ M 1 (1-Pi.1) * Pq
uncontaminated

where:
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e Aisthe amount added per unit. It is not a concentration value.
e P, is the probability of addition to any unit.

For example, assuming:

e Initial Contamination: 2 ng/g

e |Initial Prevalence: 0.3

e UnitMass:50g

e Addition Amount: 5 ng per unit
e Addition Likelihood: 0.001

The resulting pathway states would be:

Table 2_7. Increase-by-Addition (chemical): changes in concentration and prevalence (example data)

State (Pathway) Concentration After | Prevalence After Probability of Pathway
Addition Process Addition Process For Any Given Consumer

No addition 2 ng/g 0.3 0.999

Addition, previously | 2.1 ng/g 1 0.0003

contaminated

Addition, previously | 0.1 ng/g 1 0.0007
uncontaminated

Mass is unaffected: M; =M, ;.

For acute chemical hazards, FDA-iRISK assumes any individual might consume a serving from any given
pathway in proportion to its relative frequency of occurrence. Therefore, the probability of illness is
eventually computed downstream for each model pathway separately, and then the frequency-
weighted average over all of the pathways is taken as the final probability of illness.

For chronic chemical hazards, FDA-iRISK assumes each pathway will contribute to an individual’s daily
average consumption in proportion to its relative frequency of occurrence. Therefore, the frequency-
weighted average of concentrations over all of the pathways is taken to compute the final mean
concentration used when computing lifetime daily average doses.

If pooling occurs downstream from an addition process, food units are pooled within each pathway and
are not pooled across pathways. For information about how pooling is implemented with regard to
other process types, such as addition, see Section 3.4.4 Pooling-Chemical.

2.4.2 Decrease-Chemical

Assumption: The Decrease process type is not capable of the complete removal of the hazard from the

system.

A proportional reduction is applied to the previous concentration, specifically:
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C =Ciyx (1_ d; )
Equation 37

where di is the concentration change (expressed as a fraction of the chemical removed) for a chemical

hazard at stage . For example, if the user specifies a fractional removal of 0.1, the new concentration
will be 90% of the previous concentration.

The prevalence of contaminated units remains the same; therefore: P =P,_,.

Mass is unaffected: M, =M, ;.

2.4.3 Mass Change - Chemical

The Mass Change function incorporates both pooling and partitioning elements. The function compares
the previous unit size (by mass or volume) with the new unit size and selects pooling when the new size
is larger and partitioning when the new size is smaller. In the case where the new size is the same as the
previous size, no change is made.

Assumption: Chemical hazards are distributed uniformly throughout a given unit of food, but units of
food can have different levels of contamination.

2.4.4 Pooling-Chemical

The Pooling process type addresses the possibility that the new unit size may result from the
combination of both contaminated and uncontaminated units.

First, the number of portions is determined by dividing the new unit size by the previous unit size. This
will result in X whole units and a fraction f (0 < f < 1) of unit.

Prevalence is determined by using the previous prevalence to compute the probability that one or more
of the X whole units is contaminated:

Ppi=1-(1 _Pi—l)x

Equation 38
and the probability that the fraction is contaminated:
Pfrac =rli-1
Equation 39
The final new prevalence is computed by:
P = 1_(1_Punit)x (1_Pfrac)
Equation 40

The new concentration is determined by randomly sampling from the three possibilities:
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e Only one or more of the whole units is contaminated, with probability P,,;,;; X (1 - mec). The
resulting concentration is C; = pos_binomial(X,P;_1) X C;_1 X M;_1/M,;.

e Only the fractional unit is contaminated, with probability Prrqc X (1 — Pyp;t). The resulting
contaminationis C; = f X C;_1 X M;_1/M;.

e Both are with probability Prrqc X Pypie- The  resulting  probability is ;=
(pos_binomial(X,P;_1) + f) X Ci_1 X M;_1/M,;.

The mass M, equals the new unit size.

It should be noted that the process of pooling is not a completely random recombination of all of the
simulated units within the total Monte Carlo simulation. Rather, it is assumed that the pooling occurs
among units within a given iteration and addition pathway that have the same probability of
contamination and level of contamination. An alternative concept of pooling, where every simulated
unit across all iterations has the potential to be included in a pool, is not applied.

2.4.5 Partitioning-Chemical

Chemical hazards are assumed to be uniformly distributed in the food, therefore a portion of the initial

unit size will have the same concentration and prevalence as the previous unit: C, =C, , and P =P,

following partitioning at stage i. The new mass is as specified by the user.

2.4.6 Evaporation/Dilution-Chemical

Assumption: Evaporation and dilution occur on a unit-by-unit basis and neither process adds or removes
contamination from the system.

A proportional reduction is applied to the previous concentration, specifically:
Ci=Ciixe
Equation 41

where ¢&; is the user-specified concentration change due to evaporation (&, >1) or dilution (0 < g, <1)

for a chemical hazard at stage | .

The prevalence of contaminated units remains the same, therefore P, =P,_,.

The mass adjustment is applied as:
M, =M, /&
Equation 42

2.4.7 Partial Redistribution-Chemical

The user specifies a value, o defining the redistribution factor (i.e., the number of units among which
the contamination from one unit is spread). If the product of the redistribution factor and the previous
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prevalence equals or exceeds 1, this stage becomes a total redistribution and that function is called
instead (see below).

The prevalence of contaminated units for a chemical hazard following a partial redistribution step is:

P=P,xwo
Equation 43
The concentration of a chemical hazard at stage | following partial redistribution is given by:
, -Cu
@
Equation 44
2.4.8 Total Redistribution-Chemical
Assumption: Total cross contamination results in a prevalence of 1.
The concentration of a chemical hazard at stage i following total redistribution is given by:
C =C.xP,
Equation 45

The prevalence following total redistribution is, by definition, P. =1. For example, if the prior stage’s

prevalence is 10%, the final concentration will be 10% of the previous concentration, but the prevalence
will be 100%.

2.4.9 Sampling (OC Curve) - Chemical

This sampling process type simulates the act of rejection of product lots based on taking one or more
samples and detecting chemical contamination.

For the Sampling (OC Curve) process type, the user enters or loads a file containing a set of data-points
that correspond to points on an OC curve with the Y-axis representing Probability of Rejection (P_reject)
and the X-axis representing concentration units that the user selects.

The P_reject curve must be monotonically increasing. The probability of rejection of the sample from a
food unit will be based only on the concentration in the food unit, and will be linearly interpolated
between the provided data points and will use the minimum and maximum probability specified for
concentration values outside the specified range, as appropriate. The series of data points provided by
the user data will have increasing concentrations, and the corresponding probability can be user-
specified as descending (P_accept) or increasing (P_reject).

The user has the option of uploading the data-points that correspond to the OC Curve points in the form
of a “comma-separated values” or .CSV file format.
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If the probability of contamination in the prior process stage for the given food unit is PrevPrior, the
probability of contamination at the end of the sampling process for the same food unit is:

PrevPost = PrevPrior X (1 — Ptest X Preject)
Equation 46

Where Ptest is the proportion of food units that are tested.

2.4.10 No Change-Chemical

The No Change process type is designed for situations when the user wants, for the sake of
completeness and transparency, to include processing steps that have no effect on unit mass, hazard
concentration, or prevalence.

2.4.11 Placeholder-Chemical

The Placeholder process type is included for convenience as a temporary designation while the process
model is being built but before the data necessary to populate it have been collected. The Placeholder
process type is the only type that can later be changed to another type.

3 Predictive Models

The Increase by Growth Model and Decrease by Inactivation Model process types required predefined
predictive models to describe the growth / inactivation / lag response of a microorganism to
environmental conditions. The user has the option to add one or more of predictive models for each
microbial hazard in FDA-IRISK. A predictive model (for growth or inactivation) may be re-used in multiple
process models. You select the predefined model for the specified microbial hazard when adding
process stages to the process model.

3.1 Increase by Growth Model

The increase by growth is calculated from Loglncrease = GR;t; where GR; is the growth rate at
temperature T, and t; is the time that growth can occur, given by t—lag; , where t —lag; is the lag

time at temperature T .

For both growth rate and lag time, options are provided to either enter values directly in a primary
model, or to estimate the growth rate and lag from a secondary model provided. The details of the
primary and secondary models available in FDA-iRISK are shown in the tables below:

Table 3_1. Growth rate: primary and secondary models

Model Parameters Equation for Log Cycles* References

PRIMARY MODEL
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Model Parameters Equation for Log Cycles* References
Simple Growth GR; —growth Log Increase = GRrt;

rate at Where:

temperature T ere:

te — time that te =t —lagr

growth can Equation pm1

occur

lagr —lag time

at temperature

T
SECONDARY MODELS
Gamma Square u=y(T)lope Variation of
Root Gamma
(Temperature Where Parameterization
Only) T_T. . 2 of Square Root

min . .
y(T) = <7) by Zwietering et
Topt = Tmin al., 1996
Equation pm2
Gamma u=y(My@H)y(aw)lopt Zwietering et
Parameterization al., 1996
of Square Root Where
2
T—T,,;
Topt - Tmin
y(pH)

(pH - pHmin)(z ) pHopt — pHpin — pH)
(pHopt - pHmin)2

Ay — Aw,min
ylaw) =———

aw,opt — Ay min

Equation pm3

Polynomial
Response Surface

Includes
options to
specify temp,
pH, NaCl,
NaNO2, and
associated co-
efficient

Standard polynomial response surface — Users can
specify which response parameters to include.

Setting a co-efficient to zero essentially removes a
response variable from the equation.

For example
Buchanan et al.,
1993
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Model

Parameters

Equation for Log Cycles*

References

Square Root for
biokinetic

b - Constant

T.n — Notional
min temp

T -Temp

T, ax — Notional
max temp

C —Constant

n= (b(T = Tpip){1 — 7T ma0)})?

Equation pm4

McMeekin et
al., 1993a

Square Root

b - Constant

T.in — Notional

min temp

T —Temp

u= (b(T - Tmin))2

Equation pm5

McMeekin et
al., 1993b

Square Root with
aw

b — Constant

a — Min

w min
water activity
for growth

a,, — Water

activity

T..,— Notional
min temp

T —Temp

2
u= (b ’(aw - anin)(T - Tmin))

Equation pm6

McMeekin et
al., 1993c

Square Root with
pH

b — Constant
pHpin —Min pH
for growth

pH —pH

Tmin — Notional

min temp

T—Temp

w= (0O = PHad) (T = Ty

Equation pm7

McMeekin et
al., 1993d

*Models and parameters can be in either Log. or logio. The conversion to logio (specifically dividing

by In(10)) will be applied if the user specifies the model was fit using loge.

Table 3_2. Lag time models

Model Parameters Equation for Hours* Ref.
_ . . P .
Hyperbola P — Decrease in lag time when log(Lag) = McMeekin
T—q etal,
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temperature increases Equation pm8 | 1993e

g —Temperature where lag is
infinite (for example < Tmin)

T-Temp
Polynomial Includes options to specify Standard polynomial response surface. For
Response Surface | temp, pH, NaCl, NaNO2, and . fici ol example
associated co-efficient in a Setting a co-efficient to .zebrlo issentlr? Y Buchanan
standard polynomial response remO\{es a response variable from the et al., 1993
surface. equation.
Relative Lag k — constant lag = Gk Ross &
G - generation time Equation pm9 McMeekin,
2003
Square Root b - Constant 1 Zwietering
log(L =
og(Lag) 2 etal., 1991

b(T- Ty )

Tmin — Notional min temp

Equation pm10
T -Temp q P

* Log(Lag) will be converted to Lag as appropriate depending on user specification of loge or logio

Tmin represents the theoretical or notional minimum temperature and is defined as “Conceptual
temperature of no metabolic significance” (Ratkowsky et al., 1982) and is the temperature below which
the rate of growth is zero or lag time is infinite.

Tminimum represents the experimental minimum temperature observed and it will be defined as “Lower
temperature at which the rate of growth is zero or lag time is infinite”.

Tmaximum represent the experimental maximum temperature observed and it will be defined as “Upper
temperature at which the rate of growth is zero or lag time is infinite”. Currently, there is no distinction

|II

between Tmaximum and a “theoretical” maximum temperature.

Tmaximum represent the experimental maximum temperature observed and it will be defined as “Upper
temperature at which the rate of growth is zero or lag time is infinite”. Currently, there is no distinction

|II

between Tmaximum and a “theoretical” maximum temperature.

3.2 Decrease by Inactivation Model

a
The log decrease is calculated from the Weibull model L = (%) , when shape = 1 the Weibull becomes

the familiar linear model. There are 3 options presented to the user to incorporate the D value:

e Direct user input of the D value (as fixed value or distribution)
e (Calculation from the linear model LogD = mT+b
e (Calculation from log-linear model with user specified Z value, Dref and Tref
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Table 3_3. Inactivation: primary and secondary models

a-— Shape parameter

Equation pm11

Model Parameters Equation
PRIMARY MODEL
Log Reduction t—time IR = (i)“ Van Boekel (2002)
~\D
D - D-value

SECONDARY MODELS

Specification of D
from Linear

T—temp

m, b — constants

D= 10mT+b

Equation pm12

Specification of D
from Z-valued

Dret — D value at
reference temp

Tret —reference temp
Z—zvalue

T—-temp

T— Tref>)

D = 10A(l0g10Dref - ( 7

Equation pm13

Peleg (2003)
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4 Estimation of the Extent of Consumption: Consumption
Models

4.1 Acute Exposure

In FDA-IRISK, acute exposure to a hazard refers to exposure during a single eating occasion, after which
illness can ensue. The dose is calculated on a per-eating-occasion basis, so that the amount of food
consumed during a particular eating occasion (i.e., a “serving”), along with the concentration of hazard
in the food on that eating occasion, determines the applied dose. Each eating occasion is considered an
independent opportunity to become ill.

FDA-IRISK uses this structure for risks due to microbial pathogens, and risks due to acute exposures to
chemical hazards.

The concentration (and prevalence) of a hazard in the food at consumption is calculated in the process
model using inputs from the user. The amount of food consumed is based on user-inputs comprising the
consumption model (see Figure 2). In cases where the serving size differs from the final unit mass output
of the processing stages, the mass change function (pooling or partitioning, according to the relative size
of the unit and the serving) is used to determine concentration and prevalence values in servings. Monte
Carlo simulation is employed to combine these inputs in a stochastic manner to capture variability in
hazard concentration and in amount of food consumed. To increase the efficiency of the simulation, the
dose response model uses doses from contaminated servings of food only, and provides an estimate for
the risk of illness per contaminated serving. The prevalence is then incorporated to determine the risk of
iliness for any serving (Figure 2) for each iteration.
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The mean risk of illness per serving across all iterations, is then multiplied by the user-specified annual
number of servings consumed (again from the consumption model) to predict the number of cases per
year. Each case is assigned a value for burden (in DALYs, COIl, or QALY). In this way, the overall burden
for the exposure is calculated. (This value for annual burden is the basis of the rankings.)

Process Model with 1
Stages

Final Process
Concentration

Final Process

Prevalence

Consumption Model Serving

(amount per serving) Concentration

Serving

Prevalence

Dose
(contaminated

serving)

Risk of Illness

Risk of Tlin
(contaminated s Fes

(per serving)

Dose Response Model

serving)

Mean Risk of Illness
(per serving)

Consumption Model (annual
Servings)

Annual Burden
of Tllness

Health Metric
(DALY, Cost per Illness, or QALY)

Acute

Figure 2. Schematic representation of the mathematical structure of a risk scenario for acute exposure (i.e.,
microbial hazards and acute exposures from chemical hazards). Rectangles represent user input and ovals
represent FDA-iRISK results.
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4.2 Consumption Model for Acute Exposure

4.2.1 Population Groups for Acute Exposure

The risk scenario for acute exposure assumes that illness results from a single exposure to a certain
amount of microbial pathogen or chemical. The effect of this dosage can depend on the individual
consuming the food, both in terms of the probability of becoming ill, and in terms of the severity or type
of illness. FDA-IRISK therefore permits the user to define various mutually exclusive population groups
for consideration in a risk scenario for a single acute exposure.

For example, pregnant women and the elderly are more likely to become ill than middle-aged non-
pregnant consumers given the same dose of the bacterium, Listeria monocytogenes. In addition, such
illness in a pregnant woman can affect the newborn child, whereas illness in the elderly is more likely to
result in death than is illness in the general population. Therefore, when creating a risk scenario
involving acute exposure to hazards, such as L. monocytogenes, the user can define population groups of
i) pregnant women, of ii) the elderly, and of iii) the general population. The user can also define
consumption models, dose response models, and health metrics that are specific to each group.

The population groups in a risk scenario for acute exposure represent mutually exclusive segments of
the population of interest that differ in terms of one or more of: consumption pattern, susceptibility to
infection/illness, and type or severity of health impacts resulting from infection or illness. The sum of the
eating occasions per year across the groups must account for all annual eating occasions of the food in
the greater population.

4.2.2 Calculation of Amount Consumed per Eating Occasion

The outputs of the consumption model for a risk scenario for acute exposure, are the mass of the food
consumed per eating occasion (may be a distribution), and the number of eating occasions per year
across the population of interest. These are explicitly defined by the user.

4.3 Chronic Exposure

FDA-IRISK uses a chronic exposure structure for those chemicals that may occur in food in levels too low
to pose an immediate risk of illness, but that can cause illness after a long period of regular exposure at
these low levels.

In a risk scenario for chronic exposure, the consumption model is used to generate a value for the
average amount of the food consumed per day (on a per unit body weight basis) over a lifetime of
exposure. It takes into account the different daily amounts that may be eaten at different life stages, the
body weight during those stages and the duration of those life stages relative to the entire lifespan. This
amount is then multiplied by the average concentration of hazard in the food, a value that represents all
servings consumed in a lifetime and that is determined by both the average concentration of the hazard
and the prevalence of contamination. The result is the Lifetime Average Daily Dose (LADD), which is
provided to the dose response model to obtain a mean risk of illness per consumer.

The mean risk of illness per consumer is then multiplied by the user-specified number of consumers
(again from the consumption model) to predict the total number of cases over the user-defined duration
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of exposure. Each case is assigned a value for burden (in DALYs or COIl) and in this way the overall
burden for the exposure is calculated (see Figure 3). The overall burden is divided by the duration of the
exposure to arrive at a value for annual burden. (This value for annual burden is the basis of the

rankings.)

Where consumption or body weight is expressed as a probability distribution, daily consumption and
body weight are sampled anew at each life stage. Thus, it is possible that a 10-year old weighing 50 kg
and consuming 10 g of the food a day in one lifestage (ending at 10 years of age) will be simulated as an
11 year old weighing 40 kg and consuming 20 g of the food a day in the subsequent lifestage.

Process Model with 7 Stages

Final Mean Final

Concentration Prevalence

LADD Distribution

(among consumers)

Mean Risk of Illness

(per consumer)

Y

4.3.1

Dose Response Model
A
Consumption Model Consumption Model Cases of
—
(amount per day) (number of consumers) Illness
Health Metric v
(DALY, Cost per Illness, or Q:\L?ﬁ e

of Illness

Exposure Duration

Figure 3. Schematic representation of the mathematical structure of a risk scenario for chronic exposure to
chemical hazards. Rectangles represent user input and ovals represent FDA-iRISK results. LADD refers to Lifetime
Average Daily Dose.

Chronic Exposure for Multifood Scenarios

FDA-iRISK introduces the concept of multifood chronic scenarios in which the exposure from multiple

food sources is aggregated to compute a LADD over all food types prior to applying the dose-response

model to compute the mean risk of illness per consumer.

A multifood scenario is otherwise very similar to a single food scenario (see Figure 4).
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Chronic Multifood
Food A [k
Process Model with 7 Stages
Final Mean Final
Concentration Prevalence LADD
Distribution for all
|+ Foods (among
Consumption LADD Distribution consumers)
Model for Food (among
(amount per day) consumers)

T

[

Mean Risk of Illness

(per consumer)

Dose Response Model

Cases of
Illness

Consumption Model

(number of consumers)

Health Metric

(DALY, Cost per Illness, or QALY) Annual Burden

of Illness

Exposure Duration

Figure 4 Schematic representation of the mathematical structure of a multifood chronic exposure scenario.
Rectangles represent user input and ovals represent FDA-iRISK results. LADD refers to Lifetime Average Daily Dose.

4.3.2 Chronic Exposure for Multihazard - Multifood Scenarios

FDA-iRISK introduces the concept of multihazard - multifood chronic scenarios for risk benefit and
tradeoff analysis. The exposure from each hazard is reported separately and aggregated to compute a
LADD over all food types prior to applying the dose-response model to compute the mean risk of illness
per consumer.

When a diet and associated diet shift is included, the consumption model is adapted to reflect the
specific change in intake, and exposure and risk calculated as previously described. Diet shifts are
implemented across all population groups and all lifestages. The overall risk change based on diet
change over the multiple hazards and foods is computed.
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4.4 Consumption Model for Chronic Exposure

4.4.1 Life Stages for Chronic Exposure

The risk scenario for chronic exposure, typically assumes that illness results from lifetime exposure to
low levels of a particular chemical. As the relevant dose units are expressed per unit body weight, the
actual dose can change over the course of a lifetime as the individual’s weight changes with age. In
addition, an individual may consume more or less of the food on an absolute basis over the course of a
life. For these reasons, the effective dose is calculated as the LADD described above.

Calculation of the LADD necessitates user-input of a daily average consumption amount and body
weight (may be distributions) for each life stage defined, as well as the time span covered by each stage.

The life stages in a risk scenario for chronic exposure represent sequential stages experienced by the
group of individuals enumerated in the user-defined “Number of Consumers”.

4.4.2 Life Stages for Multifood Chronic Exposure

Life stage consumption data for multifood scenarios differs slightly from single food scenarios. For
multifood scenarios, consumption from different food sources is aggregated over a common population.
Therefore, the consumption data provided for each food must be for the common population and not
just consumers of that specific food. As different foods will be consumed by different fractions of the
population, the distribution used to describe the consumption values will necessarily include a
proportion of consumers with zero consumption. As such, only the cumulative empirical distribution is
available in FDA-iRISK to describe consumption patterns for multifood scenarios. Other options are
being considered (e.g. a discrete chance distribution).

4.4.3 Calculation of Lifetime Average Daily Consumption (LADC)

The outputs of the Consumption Model for a risk scenario for chronic exposure, are the average daily
amount of the food consumed (may be a distribution) and the number of consumers within the
population of interest. The time-weighted average daily amount of food consumed per unit bodyweight
is termed the Lifetime Average Daily Consumption (LADC) of the food, and is calculated as:

LADC = 1 A Xy

n

i=1Yi
Equation 47

Where:

e nisthe number of life stages defined by the user.

e irefers to the i life stage.
o Ajis the average daily amount consumed per kg of body weight during the life stage i.

e Viisthe duration of the life stage i in years.
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4.4.3.1 Example of Lifetime Average Daily Dose (LADD) Calculation

FDA-iRISK models chronic exposure by simulating a large number of individual lifetime exposure
patterns that are possible within the population of consumers. One pattern is simulated for each
iteration of the model and the patterns may vary from iteration to iteration. For example, the first
iteration might represent a lifetime exposure pattern characterized by very high childhood exposure,
followed by very low subsequent exposure, while the second iteration might represent a pattern
featuring high exposure in childhood, youth, and old age but low exposure in middle age.

The overall dose assigned to each of these lifetime exposures is the LADD. That is, the daily dose of the
chemical ingested by the consumer (attributable to the food in question) averaged over the lifetime. The
contribution of each life stage to this average is proportional to the length of the life stage. In this way,
the changing exposure over the course of the lifetime is condensed into a single value representing the
lifetime average daily exposure. The two iterations described above, for example, might both be
represented by the same LADD, regardless of the timing of the different exposure peaks. (While average
daily dose (ug/kg) in childhood is often larger than the adult average daily dose due to the lower body
weight in childhood, the comparatively shorter period associated with this age compensates to some
extent.)

Required Inputs

Consider the calculation of the LADD of inorganic arsenic (iAs) in apple juice. The inputs required by
FDA-RISK for chronic exposure are food consumption in grams per day and body weight for the life
stages, as well as the mean level of the contaminant in the food. The mean is appropriate for widely
sourced foods consumed on a regular basis, and is computed by FDA-IRISK from the process model.
Users may specify the concentration as a fixed value or a distribution in the process model but, for
purposes of risk assessment for chronic exposure, FDA-IRISK will compute a mean concentration value
from the final stage of the process model for use in computing the LADD.

For the purposes of this example, it is assumed the mean level of iAs in apple juice is 4.43 ng/g (ppb).
Basic Calculation for One Iteration

Body weight and consumption data populate rows 1 and 2 of Table 1, with row 3 generated by dividing
the consumption in g/day by the body weight in kg.

The columns represent the age ranges associated with the user-defined life stages of the population
under evaluation. In each iteration of the simulation, FDA-iRISK uses data from each age group to build a
single “lifetime exposure”.

Note: For Table 1, it is assumed that FDA-iRISK has sampled a random value from each of the
consumption distributions associated with the life stages. (see Table 2 for results of a different
assumption.)

Row 4 displays the time span occupied by each of the user-defined population age groups, and row 5
represents the fraction of the total exposure period contributed by each of these groups. This fraction
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can then be used to “weight” the row 3 values to obtain the component (average daily consumption,
ADC) of lifetime average daily consumption that is contributed by each age (row 6).

Summing over the values in row 6 produces the LADC (of apple juice), shown in row 7.

The LADC in g/kg-day is then multiplied by the mean iAs occurrence in apple juice (4.43 ng/g) in order to
calculate the LADD in ng/kg-day (row 8):

Table 4_1 Calculation of the LADD for Inorganic Arsenic from Apple Juice — Iteration 1.

Age Range 2to 10 11to 17 18to 64 65 to 85
1) Body weight (kg) 26 57 80 80

2) Consumption (g/day) | 53 20 10 15

3) Cons. by wt. (g/kg-d) 2.04 0.35 0.13 0.19

4) Time Span (years) 9 7 47 21

5) Fraction of total span | 0.107 0.083 0.560 0.25

6) ADC (g/kg-day) 0.218 0.029 0.070 0.047

7) LADC (g/kg-day) 0.364

8) LADD (ng/kg-day) 1.61

This example represents a random iteration in which random samples have been drawn from the
consumption (g/day) distribution for each life stage. (Note: Some values are rounded for presentation
purposes.)

Basic Calculation for a Second Iteration

When consumption data are provided as a distribution, for example by using the Cumulative Empirical
option to input percentile consumption data, FDA-iRISK samples a single value from each distribution in
each iteration of the simulation. In other words, for one simulated lifetime exposure that the tool builds
from the input data, a consumption value from the high end of the distribution might be selected to
represent consumption in the youngest age group, while a consumption value from the low end of the
distribution might be selected to represent every other age group. All combinations are possible. Table
4 2 illustrates the LADD calculation resulting from an iteration in which random samples have been
drawn from the consumption distributions corresponding to high consumption at a young age and lower
consumption at older ages.
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Table 4_2 Calculation of the LADD for Inorganic Arsenic from Apple — Iteration 2

Age Range 2to 10 11to 17 18to 64 | 65t0 85
1) Body weight (kg) 26 57 80 80

2) Consumption (g/day) | 130 5 0.6 0

3) Cons. by wt. (g/kg-d) 5.00 0.088 0.0075 0

4) Time Span (years) 9 7 47 21

5) Fraction of total span | 0.107 0.083 0.560 0.25

6) ADC (g/kg-day) 0.536 0.0073 0.0042 0

7) LADC (g/kg-day) 0.547

8) LADD (ng/kg-day) 2.42

This example represents random samples that have been drawn from the consumption distributions
corresponding to high consumption at a young age and lower consumption at older ages. (Note: Some
values are rounded for presentation purposes.)

Variations on the Basic Calculation

Note: If the user provides single (fixed) values to represent consumption for the different age groups,
and the mean body weight (per age group) and inorganic arsenic level are also fixed (as shown here),
then all iterations of the simulation will produce the same estimated LADD value.

If, on the other hand, distributions are used to represent body weight, rather than the fixed values used
in this example, there will be a wider range of values possible for each cell in row 3, and by extension for
the LADD estimate. FDA-iRISK does not enforce correlation between body weight and consumption, so
when building a single simulated lifetime exposure, a body weight from the low end of the distribution
can be combined with a consumption value from the high end of that distribution.
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4.5 Variability Distributions for Amount per Eating Occasion and Body
Weight

The following variability distributions are available in FDA-IRISK for users to define “Amount per eating
occasion” and Body Weight (kg):

Table 4_3. Distributions for consumption (amount per eating occasions and body weight)

Distribution

Parameters

Beta

Alpha, Beta

Beta General

Alpha, Beta, Lower bound, Upper bound

Beta PERT

Minimum, Mode, Maximum

Chance

Probabilities, Values (for probabilities)

Empirical (cubic)

Probabilities (must include 0 and 1), Values (for probabilities)

Empirical (linear)

Probabilities (must include 0 and 1), Values (for probabilities)

Fixed Value

Value

Gamma

Shape, Rate

Log10Uniform

Log10 Minimum, Log10 Maximum

Log10Uniform (Percentiles)

Log10 5% Percentile, Log10 95™ Percentile

Lognormal

Mean, Standard Deviation

LogUniform

Ln Minimum, Ln Maximum

LogUniform (Percentiles)

Ln 5% Percentile, Ln 95" Percentile

Normal

Mean, Standard Deviation

Normal (Truncated)

Mean, Standard Deviation, Lower bound, Upper bound

Triangular

Minimum, Mode, Maximum

Triangular (Percentiles)

5 percentile, Mode, 95 ™ Percentile

Triangular (Truncated)

Minimum, Mode, Maximum, Lower bound, Upper bound

Uniform

Minimum, Maximum

Uniform (Percentiles)

5 Percentile, 95 ™ Percentile
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5 Estimation of Cases of Illness: Dose Response Models

The process model produces a value (which may be a distribution) for the concentration of the hazard
among contaminated units of the food at the point of consumption (i.e., including any consumer storage
and/or cooking steps). It also yields a value for the prevalence of that contamination and the mass of
each unit of food.

The consumption model provides a value (which may be a distribution) for the food consumed. The dose
of the hazard to be applied in the dose response model is then determined by the mass of the food
consumed and the hazard concentration in that food. The specific calculation of the dose depends on
whether the exposure is acute or chronic.

5.1 Dose Calculation, Acute Exposure

The acute dose, AD, is calculated for servings of food in the case of acute exposure and is given by:

AD = C, X M, or

AD = CoxMs
BW

Equation 48

where:

. CS is the concentration by mass or volume unit of food (e.g., cfu/g, pfu/g, the number of
oocysts or virus particles per unit mass of food, the number of microorganisms per ml) in

contaminated units at consumption (the s subscript refers to servings).

e M. is the serving size (mass or volume amount) consumed at an eating occasion.

e BW:is the body-weight of the consumer.

The contamination of the serving of food at consumption is obtained from the output of the process
model and using the Mass Change process type (not seen by the user), applying either pooling or
partitioning, according to the relative size of the final mass of the unit of food from the process model,
and the mass of the serving to convert from final processing unit size to serving size.

Note: The user has the option of specifying the dose units for acute exposures to a chemical as either
{mass of substance}/{kg body-weight}, or simply {mass of substance}. This determines which of the two
forms of the dose equation is applied. This allows for the option for acute exposures to cause illness at a
probability that is dependent only on the amount of the substance consumed, and independent of the
body-weight of the consumer.
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5.2 Dose Calculation, Chronic Exposure

The dose applied in the case of chronic exposure is a LADD, which is equivalent to the weighted (by life
stage duration) average of average daily doses (ADDs) for each life stage, across the duration of
exposure, typically a lifespan. In FDA-RISK, the weighting by life stage duration is implemented prior to
calculating the dose, so the LADD is calculated as the weighted average daily consumption of the food,
multiplied by the average concentration of hazard:

where:

LADD = LADC X mean(C; X P;)

Equation 49
C, is the mass of hazard per mass or volume unit of food in a contaminated serving of food at
consumption (i.e., at the end of the process model).
PS is the prevalence of contaminated servings of food at consumption.

LADC is the lifetime average daily consumption of the food, in mass or volume units per kg-day,
calculated as described in the Consumption Model (see Section 4.4.2).

Life stage consumption data for multifood scenarios differs slightly from single food scenarios.
For multifood scenarios, consumption from different food sources is aggregated over a common
population. Therefore, the consumption data provided for each food must be for the common
population and not just consumers of that specific food. As different foods will be consumed by
different fractions of the population, the distribution used to describe the consumption values
will necessarily include a proportion of consumers with zero consumption. As such, only the
cumulative empirical distribution is available in FDA-iRISK to describe consumption patterns for
multifood scenarios. Other options are being considered (e.g. a discrete chance distribution).
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5.3 Dose Response Models for Microbial Hazards (Acute Exposures)

All microbial hazards are assumed to act on an acute exposure basis. FDA-iRISK provides the following
model options for acute exposures to microbial hazards:

e Beta-Poisson

e Empirical

e Exponential

e Non-Threshold Linear
e Threshold Linear

e Weibull

Doses for microbial hazards are expressed as cfu, pfu, or other as specified by the user.

In addition to the parameters listed for the dose response models described below, the user is required
to provide a percentage value for probability of iliness given response.

Note: For microbial hazards, FDA-IRISK uses a modelling approach that, for each iteration, tracks the
prevalence (proportion) of contaminated food units and the number of bacteria in the contaminated
food units. In each case, the contamination level is, by design, greater than or equal to 1 cfu (pfu) per
food unit. This has implications for the formulations used for the Exponential and Beta-Poisson dose
response models (Pouillot et al., 2014), as described below.
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5.3.1 Beta-Poisson

The modeling approach used in FDA-IRISK generates individual doses. In keeping with the use of
individual doses!, the Beta-Poisson dose response model is implemented as a Beta-Binomial dose
response function. This modelling approach corresponds to Method 2 as described in Pouillot et al.,
2014. The specific implementation uses the Beta function alternative described by equation 11 of Haas,
2002:

B(«, B+ dose
P (dose,c, ) :1_(L)
B(a, B)
Equation 50
where:
e dose is the dose on the non-log scale.
e o and B are parameters of the dose- response model.
o B(a, 8) is the Beta function.
e a>0,86>0
An example of a Beta-Poisson dose response model is shown in Figure 5.
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Figure 5. The Beta-Poisson dose-response relationship when a is 0.13 and 8 is 51.
Note that the dose is shown on the log10 scale.

! Note: The individual dose is required for this model, which differs from the classical Beta-Poisson model, P(dose, a, B) =1 - ( 1 + dose/B )*a,
where the dose used represents a mean dose ingested.
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5.3.2 Empirical

The empirical dose-response model is used to create custom dose-response models using a set of
concentration/probability of response data points. FDA-iRISK offers either linear or cubic interpolation
to determine the probability of response between the specified doses.

5.3.3 Exponential

The modeling approach used in FDA-IRISK generates individual doses? . In keeping with the use of
individual doses, the Exponential dose response model is implemented as a Binomial dose-response
function. This modelling approach corresponds to Method 2 as described in Pouillot et al., 2014:

P (dose,r)=1—(1—r)®*
Equation 51
where:

e dose is the exposure dose (non-log scale).
e ris the probability that a single ingested organism is able to survive and initiate infection or
iliness (depending on how “response” is defined).

In the exponential model, the value of r is defined specifically for each pathogen (and, should the user
so choose, for each population group). An example of an Exponential dose response model is shown in
Figure 6.

0.9 1
0.8 1
0.7 1
0.6 1
0.5 1
0.4 4

0.3 4

Probability of Response

0.2 1

0.1 1

0 T T T T T 1
0 1 2 3 4 5 G

Log Dose (organisms)

Figure 6: The Exponential dose-response relationship given an r value of 0.001.
Note that the dose is shown on the log scale.

2 Note: The individual dose is required for this model, which differs from another form of the exponential model, P = 1 - exp(-rd), where the
dose used represents a mean dose ingested.
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5.3.4 Non-Threshold Linear

Given a user-specified dose (“Reference Point”) on the logio scale and associated risk at that dose (“Risk
at Reference Point”), combined with the assumption that the risk is zero at (and only at) zero exposure,
a linear relationship is obtained. The probability of response in general can then be determined as:

where:

Probability of Response

P (dose, RfP) = dosex (W)

10RfP

Equation 52

dose is the exposure dose expressed in cfu or pfu.

RfP is the user-specified dose (“Reference Point”), expressed in logio units.

RiskatRfP is the user-specified probability of response given exposure to dose RfP (“Risk at
Reference Point”).

The probability of response is limited to not exceed 1.
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Figure 7. A hypothetical Non-Threshold Linear dose response relationship where the user specifies that the
probability of response at a dose of 0.7 logo cfu (5 cfu) is 0.5.
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5.3.5 Threshold Linear

The Threshold Linear model assumes a linear relationship between the level of exposure (dose) and the
probability of response. It also assumes that there is a threshold effect in this relationship such that for
numbers of organisms below the threshold, there is a zero probability of response, but for numbers
above the threshold, the dose response is linear, so that the probability of response in general is:

0 d<T
P (dose, T, RfP, RiskatRfP ) = (dose—T)x RiskatRfP 4T
RP —T

Equation 53
where:

e dose is the exposure dose.

e RfPis the user-specified dose (“Reference Point”).

e RiskatRfP is the user-specified probability of response given exposure to dose RfP (“Risk at
Reference Point”).

e Tis the user-specified threshold below which the probability of response is zero.

e The probability is limited not to exceed 1.
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Figure 8. The Threshold Linear dose-response relationship given a Reference Point dose of 6 logio cfu with
associated probability of response of 0.22, and a threshold of 5 logyo cfu.
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5.3.6 Weibull

The following formula is used (Haas, 1999):

P (dose.a, B) =1—exp(—/f x dose”)

where:

Equation 54

e o (power)>13and B (slope) > 0 are parameters of the dose response model.

An example of a Weibull dose response model is shown in Figure 9.
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Figure 9. An example of a Weibull dose-response relationship with B = 0.0001 and a = 1. Note that the dose is

3 Restricted to > 1 based on EPA (2012).

shown on the log10 scale.

September, 2016

Page 55



FDA-iRISK® 4.0 Technical Document

5.4 Dose Response Models for Chemical Hazards (Acute Exposures)

Chemical hazards may act based on an acute or a chronic exposure. The tool provides the following
model options for acute exposures to chemical hazards:

e Cumulative Lognormal
e Empirical

e Linear by Slope Factor
e Non-Threshold Linear
e Step Threshold

e Threshold Linear

e Weibull

The units of dose for acute chemical exposures are expressed in terms of either mass or mass/(kg of
bodyweight). This allows the user the option to model acute exposures as causing illness at a probability
that is dependent only on the amount of the substance consumed, and independent of the body-weight
of the consumer. The option to use mass rather than mass per unit body weight, may be appropriate for
some substances that trigger a response (e.g., immediate and localized) that is independent of the mass
of the consumer).

In addition to the parameters listed for the dose response models described below, the user is required
to provide a percentage value for probability of illness given response. This allows the response to be a
sub-clinical event (like a positive biomarker with or without illness), and the probability of illness to
represent the fraction of sub-clinical events that result in a sufficiently adverse response as to be
considered an illness.

5.4.1 Cumulative Lognormal

The dose response relationship is a re-parameterization of the Log-Probit model (described below),
based on the cumulative distribution of the log-normal distribution or the normal distribution when
using log-transformed values for the dose, EDsp and geometric standard deviation (GSD).

In(dose)
P (dose, ED,,,GSD) = \/1_ f Xp[ u)Jt

Equation 55

where

e Where = In(EDso) and o = In(GSD).

e EDspis the dose causing a 50% probability of response.
e GSD is the geometric standard deviation.

e u>0ando>0; EDse>0 and GSD>O0.
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An example of a Cumulative Lognormal dose response model is shown in Figure 10.
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Figure 10. The Cumulative Lognormal dose-response relationship when the EDs is 30 and the GSD is 1.8.

5.4.2 Empirical

The empirical dose-response model is used to create custom dose-response models using a set of

concentration/probability

of response data points. FDA-iRISK will use linear interpolation to determine

the probability of response between the specified doses.

5.4.3 Linear by Slope Factor

This dose response is another parameterization of the non-threshold linear dose response. Given a user-

specified slope factor, a linear relationship is obtained:

P (dose,c) = dosexc

Equation 56
where:
e dose is the exposure dose.
e Cisthe slope.
e The probability is limited not to exceed 1.
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An example of the Linear by Slope Factor dose response model is shown in Figure 11.

Probability
of Response

021

01 4——

Dose

Figure 11. The Linear by Slope Factor dose response model where the slope is 0.1.

5.4.4 Non-Threshold Linear

Given a user-specified dose (“Reference Point”) and associated risk at that dose (“Risk at Reference

Point”), combined with the assumption that the risk is zero at (and only at) zero dose, a linear

relationship is described. The probability of response in general can then be determined as:

where:

P (dose, RfP, RiskatRFP) = dose x

RiskatRfP
RfP

Equation 57

e dose is the exposure dose.

e RfPis the user-specified dose (“Reference Point”).

o RiskatRfP is the user-specified probability of response given exposure to dose RfP (“Risk at

Reference Point”). The probability of response is limited to not exceed 1.
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An example of a Non-Threshold Linear dose response model is shown in Figure 12.

1 J NN SN S SN D S N S S
Probability v
of Response  ggd b b

0 ; f ¢ ; ; : ; ; .

0 1 Z 3 4 3 & T g 49 10

Dose

Figure 12. The Non-Threshold Linear dose-response relationship where the probability of response at a dose of 5 is
0.5.

5.4.5 Step Threshold

The Step Threshold model assumes that given a user-specified threshold, exposure at or below this
threshold results in zero risk of health effects, and exceedance of this threshold results in a 100%
probability of response, specifically:

0 d<T

P(d’T)z{l d>T

Equation 58

where:

e disthe dose ingested by the consumer.
e T isthe user-specified threshold below which there is no response.
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An example of a Step Threshold dose response model is shown in Figure 13.
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Figure 13. The Step Threshold dose-response relationship where the threshold is given as 3.

5.4.6 Threshold Linear

The Threshold Linear model assumes a linear relationship between the level of exposure (dose) and the
probability of response. It also assumes that there is a threshold effect in this relationship such that
below the threshold, there is a zero probability of response, but above the threshold the dose response
relationship is linear, so that the probability of response in general is:

0 d<T

P (dose, T, RP, RiskatRfP) = 1 (4050 T RiskatRfP | | _ ;
RfP-T

Equation 59
where:

e dose is the exposure dose.

o RfP is the user-specified dose (“Reference Point”).

o RiskatRfP is the user-specified probability of response given exposure to dose RfP (“Risk at
Reference Point”).

e Tis the user-specified threshold below which the probability of response is zero.

e The probability is limited not to exceed 1.
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An example of a Threshold Linear dose response model is shown in Figure 14.
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Figure 14. The Threshold Linear dose-response relationship given a Reference Point dose of 5 with associated
probability of response of 0.5, and a threshold of 2.

5.4.7 Weibull
The following formula is used (based on USEPA, 2012):

P (dose.a, B) =1—exp(—/f x dose”)

Equation 60

where:

e a>1%and B > 0 are parameters of the dose response model.

4 Restricted to > 1 based on EPA (2012).
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An example of a Weibull dose response model is shown in Figure 15.
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Figure 15. An example of a Weibull dose response relationship with g = 1.9E-6 and a = 2.7.

5.5 Dose Response Models for Chemical Hazards - Chronic Exposures

For chronic exposures to chemical hazards, FDA-IRISK provides the following model options for the dose

response relationship:

e Cumulative Lognormal*

e Decreasing Log10-Logistic
e Decreasing Logistic

e Decreasing Log-Logistic

e Decreasing Probit

e Empirical*

e Gamma

e Linear by Slope Factor*

e Logistic

e log-Logistic

e lLog-Logistic with Background
o Multistage

e Non-Threshold Linear*

e Probit

e Restricted Log-Probit

e Restricted Weibull

e Step Threshold*

e Threshold Linear*

e  Weibull*
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*Described in Section 5.4 Dose Response Models for Chemical Hazards (Acute Exposures).

The models are based on the notation employed in the Benchmark Dose Modeling Software from EPA
(USEPA, 2012). This allows dose response models developed using the BMDS software to be easily
implemented in FDA-IiRISK. Users need to ensure the correct dose-units are selected. Note that the
dose-units do not need to be adjusted by the user to be the same as those used in the process model.
FDA-iRISK adjusts the dose units from the process model to match those of dose response model (e.g.,
dividing doses expressed in pug by 1000, if the dose response model is expecting mg).

All doses for chronic chemical exposures are expressed in mass/kg-day, where kg refers to the body
weight of the consumer.

In addition to the parameters listed for the dose response models described below, the user may
provide a percentage value for probability of illness given response (100% is the default value). This is
intended to allow for conversion from estimates of response (which may not result in illness) to
estimates of a more adverse effect that would be considered a health outcome.

5.5.1 Decreasing Log10-Logistic

The ‘nfDecreasingloglOLogistic’ function uses the log-logistic model and requires intercept (Bo) and
slope (B1) parameters. The function assumes that data have been fit using the logio value of the dose.
Note that B1< 0.

The logie-logistic model is:

1

P(EffectllogioDose) = T S 3o ¥ Br = 10graD05e))

Equation 61

An example of a Log10-Logistic dose response model is shown in Figure 16.

Probability of Effect
o
o

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Dose (mg/kg-day)

Figure 16. The Log10-Logistic dose response relationship where Bo =-7.4758 and B, = -4.9874.
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5.5.2 Decreasing Logistic

The ‘nfDecreasinglogistic’ function uses the logistic model and requires intercept (Bo) and slope (B1)
parameters. Note that B1< 0.

The logistic model is given by:

1

P(Effect | Dose) = 1+ exp(—(By + By * Dose))

Equation 62

An example of a Logistic dose response model is shown in Figure 17.Figure 16.
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Figure 17. The Logistic dose response relationship where B¢ =5 and B, =-0.03

5.5.3 Decreasing Log-Logistic

The ‘nfDecreasingloglogistic’ function uses the log-logistic model and requires intercept (Bo) and slope
(B1) parameters. The function assumes that data have been fit using the natural log (In) of the dose.
Note that B1< 0.

The log-logistic model is given by:

1

P(Effect|logDose) = T— exp(— (B, + B * logDose))

Equation 63

5.5.4 Decreasing Probit

The ‘nfDecreasingProbit’ function uses the probit model and requires background (a) and slope (B)
parameters. Note that - e < a < e and B>0.
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The probit model is given by:

P(Effect|Dose) =1 —[®(a + f * Dose)]

where @ is the cumulative distribution function of the standard normal distribution.

5.5.5 Gamma

The following formula is used (based on EPA, 2012, with background set equal to zero):

1 pxdose
P dOSE, o, B = —

where:

e a21is“power”.
e B20is “slope” (USEPA, 2012).

An example of a Gamma dose response model is shown in Figure 18.

0.8 4
Probability

of Respaonse
P 07 -

0.6 1
0.5 1 -
0.4 1 -

0.3 1 -

0.2 1 -

0.1 1 -

0 = T T T T T T

J' t e 'dt
0

Equation 64

Equation 65
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Figure 18. The Gamma dose-response relationship for a power of 1.9 and a slope of 0.055.
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5.5.6 Logistic

The probability of response at a certain dose is given by:

1
P (dose,a, ) =
1+ exp(—(a + B x dose))
Equation 66
where a >0 and 8 > 0 are parameters of the dose response model.
An example of a Logistic dose response model is shown in Figure 19.
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Figure 19. The Logistic dose response relationship where = 0.04 and a = -5.
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5.5.7 Log-Logistic
The following formula is used (based on USEPA, 2012):

1
P (dose,, B) =
1+ exp(—(a + fxIn(dose)))
Equation 67
Where -oo< o < o0 and 6 >= 1 are parameters of the dose response model.
An example of a Log-Logistic dose response model is shown in Figure 20.
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Figure 20. The Log-Logistic dose response relationship for o =-18 and 8 = 3.8.
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5.5.8 Log-Logistic with Background

The Log-Logistic with Background dose response model introduces a background probability of response
to the Log-Logistic dose response model described in Section 5.5.7 Log-Logistic. The standard formula
for this dose response model is:

~ 1-7)
P (dose.ar, f) =7+~ exp(—(a + B xIn(dose)))

Equation 68

However, as FDA-iRISK is estimating additive risk, not including the background risk, the formula in FDA-
iRISK removes the background risk:

1—
P (dose,a, B) = d=7)
1+exp(—(a + BxIn(dose)))
Equation 69
where:
e -co<a<ooandB 21 are parameters of the dose response model.
e (O<y<1isthe background probability of response.
An example of a Log-Logistic with background dose response model is shown in Figure 21.
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Figure 21 The Log-Logistic with Background dose response relationship for a = -18 and B = 3.8, and a background
risk of 0.2.
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5.5.9 Multistage
The following formula is used (based on USEPA, 2012):

P (dose, B,, 5, 3:) :1—exp[—23:ﬂj x dose"]

Where B3, B2, Bs are parameters of the dose response model.
An example of a Multistage dose response model is shown in Figure 22.
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Figure 22. An example of a Multistage dose response relationship where the three parameter values are 2E-7, 2E-6,

and 1E-6 for B3, B2, and B3 respectively.
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5.5.10 Probit Model

The Probit dose response relationship is based on the cumulative distribution of the normal distribution.
The user specifies two parameters, a and 8:

P (dose, a, ) = ©(a + f x dose) —D(«x)
Equation 71
where:

e () is the Cumulative Distribution Function of the standard normal distribution (u=0, o = 1).
e qais “intercept”.
e B>0is “slope” (USEPA, 2012).

Note: FDA-IRISK does not reproduce the equation from the appendix of the BMDS technical
documentation (USEPA, 2012) exactly, since the desired response is the additive risk, not including the
background risk. This is achieved by subtracting the probability of response at zero dose, ®(a). This
ensures that the risk is zero when the dose is zero.

An example of a Probit dose response model is shown in Figure 23.
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Figure 23. The Probit dose response relationship a is -2.3 and B is 0.27.
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5.5.11 Restricted Log-Probit

The Log-Probit dose response relationship is a re-parameterization of the Cumulative Lognormal
Distribution. The user specifies two parameters, a and 8:

P (dose, a, ) = (1—y) x D(x + S x In(dose))
Equation 72

o where:®() is the Cumulative Distribution Function of the standard normal distribution (L=0, o =
1).

o ais “intercept”.

e B21is“slope” (USEPA, 2012).

e (O<y<1isthe background probability of response (USEPA, 2012).

Note: FDA-IRISK does not reproduce the equation from the BMDS technical documentation (USEPA,
2012) exactly, since the desired response is the additive risk, not including the background risk. The
background term may have been required to fit the BMDS data to some observational data. This ensures
that the risk is zero when the dose is zero (i.e., since O(- )=0).

An example of a Log-Probit dose response model is shown in Figure 21.
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Figure 24. The Log-Probit dose response relationship where a is -3, B is 1, y is 0.016.
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5.5.12 Restricted Weibull

The Restricted Weibull dose response model includes a background probability of adverse outcome to
the general Weibull dose response model. As with other forms in FDA-iRISK that include a background
risk, FDA-iRISK removes the background risk from the formula:

P (dose.a, B) =(Q—y)*(1—exp(—L xdose”))

Equation 73
where:
e o (power)>1°and B (slope) > 0 are parameters of the dose response model.
e (O<y<1isthe background probability of response.
An example of a Restricted Weibull dose response model is shown in Figure 25.
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Figure 25 An example of a Restricted Weibull dose response relationship with g = 1.9E-6 and a = 2.7, with a
background of 0.1

5 Restricted to > 1 based on EPA (2012).
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6 Positive-Only Binomial and Poisson Distributions

With the exception of a process model starting with zero initial concentration and prevalence, FDA-iRISK
is structured to require that all units of food that are subject to the calculations in the process model are
contaminated. FDA-IRISK uses the prevalence (weighting) value associated with each concentration
value to account for units that are not contaminated.

For chemical hazards, this does not pose any special computational issues. However, for microbial
hazards, this requires that each unit must have at least one cfu, pfu, or other specified count of a hazard.
As such, FDA-IRISK uses two modified distribution functions to guarantee that the minimum value
returned by the distribution is 1.

These functions are the called the Positive Binomial (pos_Binomial()) and the Positive Poisson
(pos_Poisson()). These functions generate random numbers drawn from these two distributions but are
conditional upon generating positive values. This is critical to efficient computation of risk, particularly
where contamination becomes rare due to low concentrations in raw materials, or through reductions
due to microbial inactivation. The purpose of the conditional random sampling is to avoid wasting
significant computational effort in further simulating the fate of uncontaminated servings. The
probability that the Binomial process or Poisson process being simulated will generate a value of zero, is
taken into account by adjusting the corresponding estimate of prevalence.
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7 Quantifying Uncertainty

In addition to specifying variability for FDA-IRISK model elements, users can also specify quantitative
descriptions of uncertainty. This is achieved by specifying an uncertainty distribution for one or more
model parameters on the variability dimension. These can be fixed (single value) parameters such as the
initial prevalence of a process model, or parameters defined using a variability distribution such as an
initial concentration defined as a Normal distribution.

When specifying uncertainty for a fixed parameter, the user assigns an uncertainty distribution directly
to that parameter (e.g. a beta distribution for the point value of prevalence). When specifying
uncertainty for a variability parameter or a dose-response model, the user must assign an uncertainty
distribution to one or more of the distribution’s or model’s parameters (e.g. the mean of a Normal
distribution or the beta value for a Beta-Poisson dose-response model). For dose-response models,
users can specify uncertainty for each parameter independently, or define linked sets of uncertainty
values.

When the risk scenario is simulated, FDA-iRISK adds an uncertainty dimension to the underlying Monte
Carlo simulation. For each uncertainty loop, FDA draws a random sample from each uncertainty
distribution defined and assigns the values to the corresponding parameter in the model. FDA-iRISK will
then simulate the variability dimension using these values and the variability distributions defined by the
user.

Note that FDA-IRISK computes these uncertainty results on a per scenario basis and they cannot be
aggregated across scenarios. For example, FDA-IRISK offers the user the option to group two or more
scenarios together when generating a ranking report. If the scenarios do not include uncertainty, their
results can be combined to produce an overall ranking. However, if they do include uncertainty, their
results cannot be combined.

Uncertainty Example:

In this example, the initial prevalence of the process model is defined as uncertain with a uniform
distribution of (0.1, 0.3). All other model parameters are fixed values or use only variability distributions.

For each uncertainty loop, FDA-iRISK will draw a random sample for the initial prevalence. The following
table lists the first five such values:

Table 7_1. Uncertainty example: prevalence

Uncertainty Index 1 2 3 4 5

Initial Prevalence 0.15 0.11 0.21 0.27 0.19

FDA-iRISK will then execute the full Monte Carlo simulation of the model variability using each of these
initial prevalence values.
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If uncertainty distributions are defined for more than one parameter, FDA-iRISK will assign each

distribution a value over the uncertainty index, not increase the number of uncertainty samples. For

example, assume the amount of growth (logio) in a process stage was assigned a uniform distribution of

(3,5), then the following would result:

Table 7_2. Uncertainty example: prevalence and amount of growth

Uncertainty Index 1 2 3 4 5
Initial Prevalence 0.15 0.11 0.21 0.27 0.19
Amount of Growth 33 4.1 3.9 3.2 4.5
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8 Evaluation of the Convergence for the Monte Carlo
Simulation

Evaluating the convergence for the Monte Carlo simulation has three main purposes:

e To ensure the validity of the FDA-iRISK Monte Carlo simulations (strictly speaking FDA-IiRISK uses
Random Latin Hypercube Sampling). Monte Carlo simulation provides an approximation of
statistical measures that improves as the number of iterations increases.

e To allow for adaptation of the number of iterations to the user-specified model, rather than
attempting a one-size-fits-all number of iterations, which may be impossible to specify given the
wide variation in potential applications of FDA-iRISK.

e To minimize the number of iterations while providing a specified level of convergence of
selected outputs statistics.

To meet these purposes, FDA-IRISK implements a convergence analysis of each model simulated. This
convergence analysis determines how many iterations of the Monte Carlo simulation are required. The
user can configure many of the aspects of this convergence analysis, including the number of iterations
use in each batch, the number of convergence tests required, and the maximum number of batches to
run.

For a variability only model, the stability analysis uses the following algorithm:

e An endpoint is selected to test for stability. This endpoint is either the mean of the final risk
measure (e.g., DALYs per year) resulting from the simulation or the mean of the exposure (e.g.
cfu), depending on user preference. Note that for exposure-only scenarios, the exposure will
always be used.

e Default settings are defined on the Simulation Settings tab, however the user should always
consider if these are appropriate for their simulation and adjust as necessary. The default
settings are not endorsed by FDA or RSI as suitable convergence settings for all applications of
FDA-iRISK.

o FDA-iRISK executes an initial batch of 9000 iterations (default - configurable).

o FDA-iRISK executes a subsequent batch of 3000 iterations (default - configurable).

e FDA-RISK tests the change in the selected metric between the batches. If the change in the
running mean is less than a specified threshold (1%, default - configurable), that batch is flagged
as having passed the convergence test.

e If any of the following conditions are met, the simulation ends:

o If the total number of sequential passed tests equals the number of tests required (3,
default - configurable), the model is considered to have converged and simulation ends.

o If the total number of batches simulated is greater than the maximum allows (100,
default - configurable), the simulation ends.

e Otherwise, the simulation continues and executes a new simulation batch

o If atest fails, the total number of sequential passed tests is reset to 0.

o If the simulation ends due to exceeding the batch limit, then the failure to converge is reported.
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For models including uncertainty, an expanding algorithm is used:

e  FDA-iRISK draws samples for each of the uncertainty distributions

e FDA-iRISK assigns these values to the corresponding parameters in the model

e FDA-IRISK executes the variability convergence algorithm outlined above for the current set of
uncertainty values

o  FDA-RISK repeats the process for a batch of 100 uncertainty iterations (default - configurable)

e FDA-RISK records the mean, median and range (5" to 95" percentile, configurable) values of
the endpoint selected for variability convergence. By default all 3 statistics are collected, this is
configurable with the exception of the mean which is mandatory.

e If this is the first batch, FDA-IRISK repeats the process

e If this is the second or subsequent batch, FDA-RISK tests the change in the running values of the
mean, median (optional) and range (optional) against user-specified criteria (e.g. 5%, 5% and
10%). It also checks that all variability simulations in the batch converged.

e |f the number of sequential required tests has passed, the simulation will stop. Otherwise, the
process will repeat until the model converges or the maximum number of batches is exceeded.

o FDA-IRISK will report if the model has converged or not.

FDA-IRISK provides a convergence report for each simulation job that provides a summary of
convergence testing, reporting results batch by batch.
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